Regional Hydrogeological Characteristics of Mineral Water Aquifers in Slovakia

Daniel Marcin, Katarína Benková

State Geological Institute of Dionýz Štúr, Dept. of Hydrogeology and Geothermal Energy, Mlynská dolina 1, 817 04 Bratislava, Slovakia; daniel.marcin[a]geology.sk

Abstract: During inventory of mineral water sources in 1997-2000 1,687 sources were documented on the Slovak territory, 111 were not found, 297 disappeared and 30 were destroyed. Mineral water sources in Slovakia are characterized by quite a varied representation of chemical water types with a wide range of TDS, temperature and yield. The largest representation of mineral water in Slovakia is located within the Central Western Carpathians (43 %), of which account for most of the resources Inner Carpathian Palaeogene (24.1 %) and Mesozoic sediments of the Central Western Carpathians (15.2 %). The smallest number of sources accounted for metamorphic rocks (3.2 %) and magmatic rocks (1.5 %). The second most numerous sources of mineral water are from Neogene sediments (31.7 %). This structural-geological facies has the largest representation of mineral water sources that have been acquired through technical work (the number of wells far outscores the springs). The third and fourth most numerous sources of mineral water fall within Flysch Zone (13.3 %) and Neovolcanites (6.8 %). The lowest representation of mineral water falls on Klippen Belt (4.2 %). The territory of Slovakia is explored by a number of deep geological wells to verify the presence of mineral waters. Only a small part of them has set the hydraulic parameters of the aquifers. The most important aquifers from the viewpoint of formation of mineral waters in Slovakia are the Mesozoic sediments of the central zone of the Western Carpathian and the Neogene sediments, which fill up the basins. The Mesozoic aquifers (limestones and dolomites) of mineral waters have been verified by 79 hydrogeological boreholes (56 pumping tests) and the value of the geometric mean of transmissivity coefficient $G(T) = 9.08 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$. The drillings carried out in the Mesozoic carbonates are also reported for relatively large yield (Md Q = $12.41 \cdot s^{-1}/Mn Q = 19.41 \cdot s^{-1}$). Neogene sedimentary aquifers (sands, sandstones, conglomerates) of mineral waters have been verified by 58 hydrogeological boreholes (49 pumping tests) and the geometric mean value of the coefficient of transmissivity $G(T) = 5.35 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$. Drillings carried out in an environment of the Neogene sediments have achieved balanced yields (Md Q = $10.01 \cdot s^{-1}/Mn Q = 10 \cdot 51 \cdot s^{-1}$).

Keywords: sources of mineral waters, coefficient of transmissivity, deep borehole, chemical type of water, Western Carpathians

1.1 Introduction

By 1999, 1,687 mineral water sources were registered in Slovakia. These sources are characteristic either of the content of 1,000 mg . $I^{\text{-}1}$ of dissolved solids or dissolved gases, CO_2 included ($\geq 1,000$ mg . $I^{\text{-}1}$), H_2S ($\geq 1,0$ mg . $I^{\text{-}1}$) or they reach the ground surface temperature of more than 20 °C. The occurrence of mineral waters on the territory between the Tatras and the Danube and Tisza rivers reflects its geological and tectonic evolution. The presence of major regional aquifers of mineral waters that are affected

tectonics of alpine or German types created the conditions for the formation of the mineral waters in the hydrogeological structure. In the past the ideas about the formation of mineral waters in the space of hydrogeological structures largely depended on knowledge of geological and tectonic structure, chemical composition of mineral waters and later of the isotopic composition of mineral waters. It has been the isotopic composition of mineral water that has contributed to the fact that the view of the nature of the hydrogeological structure of mineral water as such has changed from the hypothetical viewpoint to the real one. Determination of the isotopic composition of mineral waters in the hydrogeological structures provides information about the nature of the aquifer, where its chemical composition is formed over time. In some cases it is possible to determine the hydrogeological structures in which mixing of waters from multiple aquifers occurs. The knowledge of the geological and tectonic settings of the hydrogeological structure of the Western Carpathians, including the hydraulic parameters of aquifers and character of mineral water in terms of the chemical and isotopic composition, creates a closer correlation to define the conditions of formation of mineral waters. The data gained from deep boreholes in different parts of the hydrogeological structure provides valuable material that documents the evolution of monitored parameters towards the depth.

1.2 Geological and tectonic conditions of mineral waters genesis

The territory of Slovakia is situated within the Western Carpathians, which are part of the Alpine-Himalayan system with folded-Nappe structure. Formation of mineral waters takes place in the rock environment, which is liable to concentrate them, which is reflected in the quantity and quality. As the mineral waters are affiliated to the geological environment, which reflects the geological and tectonic setting of the area, we will describe these in relation to the structural-facies zone, which were earmarked by Andrusov (1958). In Slovakia there are these zones: 1. Flysch Zone, 2. Klippen Belt, 3. Central Western Carpathians, 4. Internal Neogene depressions, plains and volcanic rocks (Fig. 1.1).

The conditions favourable for the formation of mineral waters were outlined by Mahel' (1952) and supplemented by Franko (1975) as follows:

the presence of large amounts of Mesozoic sediments, mainly the Middle and Late Triassic carbonates (limestone and dolomite) and evaporites in the Permian, Early and Late Triassic;

- Extensive Tertiary (Palaeogene and Neogene) marine and freshwater sediments, mostly pelites with aquifer layers of psephites and psammites. In the Miocene evaporites occurred;
- Tectonics of Alpine type within the Mesozoic formations created far reaching folds plunging from the mountain slopes into larger depths below the internal basins and lowlands;
- Tertiary sediments have tectonics of Alpine and German types;
- Longitudinal and transverse young faults;
- Deep faults among the blocks of the Earth's crust (CO₂);
- Young Tertiary volcanism (CO₂, favourable geothermal conditions);
- Favourable geothermal conditions (average geothermal gradient of 39 °C . km⁻¹, the average heat flow density 82 mW . m⁻²).

1.3 Distribution of mineral waters in structural-facies zones

Geological setting of the Western Carpathians, which build particularly the territory of Slovakia, is reflected in the abundance of mineral waters (Tab. 1.1, 1.2) and the diversity of their chemical types (Tab. 1.3). During the inventory of mineral water sources in the years 1997-2000 1,687 sources were documented in Slovakia. Of this number, there were 1,249 sources, 111 were not found, 297 disappeared and 30 were destroyed. Among the lacking sources there were 80 springs, 4 dug wells and 27 wells, of which there is no information on their destruction.

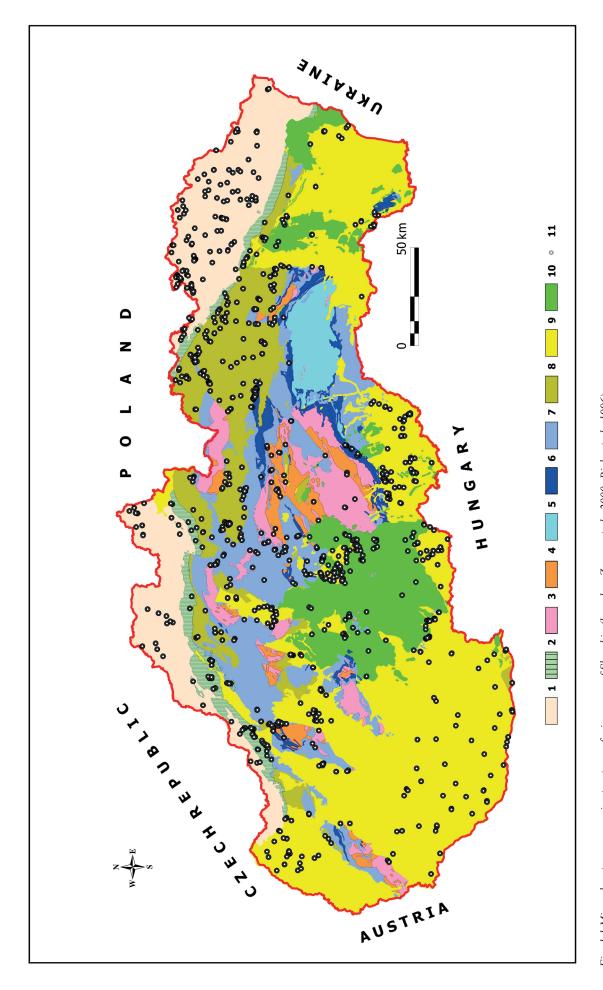
Affiliation of mineral water to the individual zones of the Western Carpathians is reflected in the frequency and variability of chemical water types.

1.3.1 Mineral waters of the Flysch Zone

The Flysch Zone is made of Cretaceous and Palaeogene alternating claystones and sandstones of marine origin. Of the total number of mineral waters in Slovakia, this share is 13.3% with five chemical types of waters (Tab. 1.3).

This zone is characterized by abundant representation of small springs of cold sulphane and carbonate, very weakly (up to 1 g . l^{-1}) and weakly mineralized water $(1-5 \text{ g . } l^{-1})$ of the chemical type Ca-Mg-HCO $_3$, Na-HCO $_3$ with yield do 0.1 l . s^{-1} .

The best known are the cold strongly mineralized carbonated water with mixed mineralization from sources Cigel'ka (Na-HCO₃-Cl) and Bardejov (Na-HCO₃) with yield up to 4 l . s⁻¹. In the area Bardejov – Stropkov there are important sources in Bardejov - Dlhá Lúka (Na-HCO3-Cl), Mikulášová (Na-Cl-HCO3) and Dubová (Na-HCO₃-Cl) with yield do 0.3 l . s⁻¹. Equally, the cold (springs, wells) and the thermal sources (well FPJ-1) of very high TDS strongly mineralized (35 – 50 g . l⁻¹) are iodine-bromine and water with thalassogenic mineralization of chemical type Na-Cl in Oravská Polhora with yield up to 11. s⁻¹. Structural-hydrogeological borehole FPJ-1 (Fig. 1.2) reached a depth of 2,417 m and it verified the sediments of Obidowa-Słopnice-Zboj unit in depth interval 1,298 - 2,417 m. The water temperature at the collar was 31.3 °C, available quantity at exploitation with free spill was set at 1.01. s-1 (Zakovič et al., 1988).


Tab. 1.1 Status of mineral water sources as of inventory 1997 – 2000 (Zeman et al., 2000)

	N	% representation	Spring	Piscine	Dug well	Borehole
exist	1,249	74.0	690	7	138	414
not found	111	6.6	80		4	27
disappeared	297	17.6	188	3	40	66
liquidated	30	1.8	17		3	10
Σ	1,687	100.0	975	10	185	517

Tab. 1.2 Representation of mineral waters sources in structure-geological facies

No.	Structure-geological facies	N	% representation	Spring	Piscina	Dug well	Borehole
1.	Flysch Zone	225	13.3	158	0	20	47
2.	Klippen Belt	71	4.2	53	0	4	14
	Magmatic rocks	26	1.5	18	0	1	7
	Metamorphic rocks – Early Palaeozoic	30	1.8	30	0	0	0
3.	Metamorphic rocks – Late Palaeozoic	23	1.4	22	0	0	1
	Mesozoic sediments of Central Carpathians	256	15.2	159	1	14	82
	Inner Carpathians Palaeogene	406	24.1	305	0	31	70
,	Neogene	535	31.7	169	8	99	259
4.	Neovolcanites	115	6.8	61	1	16	37
	Σ	1,687	100	975	10	185	517

Note: N – count of sources

5 - Metamorphic rocks - Early Palaeozoic (metasandstones, paraconglomerates, phyllites), 6 - Metamorphic rocks - Late Palaeozoic (metamorphosed clastic sediments, mafic volcanics and vol-Explanation: 1 - Flysch Zone, 2 - Klippen Belt, 3 - Crystalline/magmatic rock, 4 - Crystalline/metamorphic rock (phyllites to mica schists with metavolcanic intercalations, locally gneisses), canoclastics, scarce ultramafic fragments), 7 – Mesozoic sediments (predominantly carbonate rocks – limestones, dolomites), 8 – Inner Carpathians Palaeogene (sandstones, claystones, conglomerates, breccias), 9 – Neogene sediments (clay, sand, sandstones, claystones, conglomerates), 10 – Neovolcanites (volcanic and volcanoclastic rocks), 11 – sources of mineral waters Fig. 1.1 Mineral waters sources in structure – facies zones of Slovakia (based on Zeman et al., 2000; Biely et al., 1996)

Better known are sources with hydrosilicatogenic mineralization; they are mainly medium-mineralized, carbonic $(5-10 \text{ g} \cdot \text{l}^{-1})$ waters in Šarišský Štiavnik (Na-Ca-HCO₃) and Malý Sulín (Na-Ca-HCO₃).

Source of mineral water with polygenic mineralization of the chemical type $Mg-SO_4$ -HCO₃ represents cold strongly mineralized water in Zbudzský Rokytov with the yield of up to $0.11 \cdot s^{-1}$.

Fig. 1.2 Wellhead of borehole FPJ-1 Oravská Polhora – Slaná voda (Photo: Teťák, 2012, in Teťák et al., 2016)

1.3.2 Mineral waters of the Klippen Belt

The Klippen Belt is formed by numerous carbonate blocks of Triassic, Jurassic and Early Cretaceous age, which are encompassed within the marly Cretaceous and Palaeogene layers. The best known are the cold carbonic sources of weakly mineralized water in Nimnica (Na-HCO $_3$) with yield around 2 l . s⁻¹. Sources of thermal and cold (21 °C) weakly mineralized waters are known in Belušské Slatiny (Ca-Mg-HCO $_3$ -SO $_4$) with yield up to 10 l . s⁻¹. In addition to these better-known water sources there occur occasional cold sources of carbonated and sulphane very weakly to weakly mineralized waters of chemical type Ca-Mg-HCO $_3$, Ca-Na-HCO $_3$, Ca-Mg-Na-SO $_4$ with yield up to 0.1 l . s⁻¹.

1.3.3 Mineral waters of the Central Western Carpathians

Zone of the Central Western Carpathians is built of crystalline fundament cropping out in the Core mountains and envelope. The Core mountains are split from each other by intermountain Young Tertiary basin. Volcanic mountains and lowlands are located in the southern part of the territory of Slovakia. The mineral and thermal waters are the most abundant in this zone.

To Crystalline there are mainly bound cold carbonic very weakly mineralized waters of the chemical type Ca-Mg-HCO₃ with yield up to 0.1 l . s⁻¹. Among the well-known we can state Starý Smokovec (Ca-Na-HCO₃), Mýto pod Ďumbierom (Na-HCO₃-Cl) and Jasenie (Ca-HCO₃). In the Crystalline the wells GVL-1 (Vlachovo) and RS-1 (Čučma) with depth of 1,201.3 m/1,379.6 m documented water of chemical type Na-HCO₃ with a temperature of 19 °C or 25 °C (Franko & Snopko, 1979).

To the *Triassic carbonates* (limestone and dolomite) of different tectonic units there are bound almost all significant sources of cold and thermal waters, which are used for spa treatment, recreation or for filling in consumer packaging.

On sedimentary Tatricum envelope are bound weakly mineralized thermal water with sulphatogenic mineralization in Piešťany (Ca-SO₄-HCO₃) and Trenčianske Teplice (Ca-SO₄). The yield of these sources is ranging within $20 - 40 \, 1$. s⁻¹ and water temperature is in the range 40 - 68 °C. The source Trajan in Piešťany (Fig. 1.3) is a dug well with a depth of 8.4 meters, which is deepened by two hydrogeological wells with ø 400 mm to a depth of 11.2 meters (Krahulec et al., 1977). The maximum yield by pumping equals to 1,200 m³. day⁻¹ (13.9 1 . s⁻¹). The Triassic carbonates of the Tatricum envelope binds also cold carbonated weakly mineralized waters in Baldovce (Ca-Na-Mg-HCO₃-SO₄), Slatina (Ca-Mg-Na-HCO₃-SO₄, Ca-Mg-Na-HCO₃-Cl-SO₄) and Korytnica (Ca-Mg-SO₄-HCO₃). Their yield is ranging within $1-4\ 1$. s^{-1} and water temperature in the range 4.5 – 16.5 °C (Franko & Melioris, 2000).

Fig. 1.3 Dug well Trajan in Piešťany Spa (Photo: Marcin, 2008)

On the *Krížna Nappe* there are bound mainly thermal weakly mineralized waters with prevailing sulphatogenic mineralization. They are extended at the northern edge and amidst the Central Slovak neovolcanites. The best known are waters of chemical type Ca-Mg-SO₄-HCO₃ in Sliač, Kováčová, Sklené Teplice, Kremnica and Chalmová. In Turčianske Teplice the water is of chemical type Ca-Mg-HCO₃-SO₄. Yield of the above sites is ranging

Tab. 1.3 Mineral waters of Slovakia in structure-facies zones of the Western Carpathians (Franko & Melioris, 2000)

Structure-	RU	TU	MWO		DS . l-¹]	C([g.	O ₂		S l-1]	[1.		t [°C]	Chemical type water prevailing
				min	max	min	max	min	max	min	max	max	> 20 meq . l ⁻¹ %
			СМ	0.5	2.6	0.2	1.2	0.0	16.0	0.02	0.5	14	Ca-Mg-HCO ₃ Ca-HCO ₃
1. Flysch Zone			HSiM	0.4	25.0	0.02	2.5	0.0	30.4	0.01	0.3		Na-Ca-HCO ₃ Ca-Na-HCO ₃
			TM	14.0	47.0	0.0	0.0	0.0	0.0	0.01	2.5	47	Na-Cl
2.			CM	0.5	3.2	0.0	1.7	0.0	4.4	0.07	10.0	21.5	Ca-Mg-HCO ₃ -SO ₄
Klippen Belt			CM							0.01	2.1	11.0	Na-HCO ₃
	CR		SiM	0.1	9.6	0.0	1.6	0.0	8.5	0.01	2.4	10.4	Ca-Mg-HCO ₃ Na-HCO ₃
		TCU	СМ	3.1	8.4	2.0	2.2	**St.	**St.	0.4	1.5	16.5	Ca-Na-Mg-HCO ₃ -SO ₄ , Ca-Na-Mg-HCO ₃
			SuM	2.7	3.6	0.2	2.9	0.0	12.0	1.0	56.6	69.5	Ca-Na-Mg-SO ₄ -HCO ₃
3.	MS	KN	CM	1.5	3.9	0.01	1.7	0.0	4.0	0.9	47.5	45.0	Ca-Mg-HCO ₃ -SO ₄
Inner Carpathian		KIN	SuM	0.5	3.9	0.1	1.4	<0.6	<0.6	7.1	37.0	53.0	Ca-Mg-SO ₄ -HCO ₃
Palaeogene		ChN	СМ	0.7	3.5	0.07	2.2	0.0	1.7	0.5	71.2	48.0	Ca-Mg-HCO ₃ , Ca-Mg- HCO ₃ -SO ₄
			CM	0.5	2.6	0.04	1.2	0.0	11	0.01	10.0	10.5	Ca-Mg-HCO ₃
	CPg		HSiM	0.6	0.7	0.02	0.03	3.2	16.6	0.04	0.2		Ca-Na-Mg-HCO ₃ , Na-HCO ₃
			TM	8.7	12.4	0.0	1.27	0.0	0.0	0.2	0.6		Na-Cl-HCO ₃
			CM	0.2	2.7	0.7	2.5	0.0	0.0	0.01	0.2	13.5	Ca-Mg-HCO ₃
4. Neogene,			SiM	0.12	9.6	0.0	2.0	0.0	2.61	0.1	5.1	36.6	Ca-Mg-Na-HCO ₃ , Na-HCO ₃
Neovolcanites			TM	1.9	41.6	0.0	0.5	0.0	0.0	0.08	25.0	91.5	Na-Cl-HCO _{3,} Na-Cl
			НМ	9.5	292.0	0.04	0.8	0.0	0.0	0.2	2.0	16.8	Na-Cl
Western			MM	0.8	28.8	0.04	2.5	0.0	10.8	0.25	5.0	54.0	Na-Ca-Mg-HCO ₃ -Cl-SO _{4,} Na-HCO ₃ -Cl
Carpathians*			PM	1.6	25.0	0.0	0.4	0.2	700	0.2	2.2	21.5	Na-Ca-Mg-SO ₄ -HCO ₃ -Cl, Na-Ca-Mg-SO ₄ -HCO ₃ Na-Mg-SO ₄

Note: Rock units /RU/: CR - Crystalline rock, MS - Mesozoic sediments of Central Carpathians, CPg - Central Carpathians Palaeogene,

Tectonic units /TU/: TCU – Tatricum Cover Unit, KN – Krížna Nappe, ChN – Choč Nappe,

Mineral waters accordance origin of chemical composition /MWO/: petrogenic mineralization (CM – carbonatogenic dissolved solids, SuM – sulphatogenic dissolved solids, Fish – sulphatogenic dissolved solids, HSiM – hydrosilicatogenic dissolved solids, HM – halitogenic dissolved solids, PM – polygenetic dissolved solids), TM – thalassogenic mineralization, MM – mixed mineralization * – sources with mixed and polygenetic mineralization are distributed across the entire Western Carpathians, ** – traces of H,S.

within 4 - 40 1. s⁻¹ and water temperature in the range of 33 - 53 °C.

The carbonates of this Nappe bind thermal carbonic weakly mineralized water of chemical type Ca-Mg-HCO₃-SO₄ in Liptovský Ján, Vyšné Ružbachy, Banská Bystrica. The value of the yield of each site is within the range of 20 to 501. s⁻¹ and water temperature in the range of 20 – 45 °C. Source Kráter (Crater, Fig. 1.4) in Vyšné Ružbachy despite its name, has nothing to do with volcanic activity, but it is a karst-fissure spring. It has the character of a lake with travertine rim with a diameter of 20 m and a depth of 3 m. The yield reaches the value of 7.8 l . s⁻¹ (Krahulec et al., 1977).

In the basement of the Inner Carpathian Palaeogene in the northern Slovakia the wells Oravice OZ-1 and OZ-2 (Fig. 1.5), Plavnica PI-2, Poloma Šariš-1, Lipany L-1 and L-2 documented the presence of mineral water in the Mesozoic sediments of the Krížna Nappe close to the Klippen Belt. Drillings OZ-1 and OZ-2 were carried out to verify the presence of geothermal waters and wells (PI-2, Šariš-1, L-1 and L-2) in the north-eastern part of Slovakia aimed to verify the hydrocarbon potential of the area. The mentioned wells have documented the presence of both polygenetic mineral waters with mineralization in the Oravice area and also strongly carbonated mineral water mixed with mineralization in the north-eastern part

Fig. 1.4 Karst-fissure spring "Kráter" in Spa Vyšné Ružbachy (Photo: Marcin, 2008)

of Slovakia. Different chemical composition of water in these areas is due to nature of groundwater circulation and the remoteness of the remote catchment. While in the case of Oravice the infiltration area is close (about 2 km - NE slopes of the altitudinal point Osobitá), for the north-eastern part of Slovakia the aquifers do not crop out directly onto the surface of the potential catchment, but they are covered by sediments of Palaeogene. For potential area may be assumed the slopes of the Branisko Mts., which are located at a distance of approximately 10-15 kilometres.

Mineral waters of the Choč Nappe and higher units are typical of acratotherms presence (water with a very weak TDS and temperatures above 20 °C) of chemical type

Ca-Mg-HCO₃. Well-known sources of this chemical type are in Rajecké Teplice, Bojnice, Malé Bielice. The Choč Nappe binds also thermal mineral waters with polygenetic mineralization of chemical type Ca-Mg-HCO₃-SO₄ in Kalinčiakovo and Vyhne. The yield of the sources in these areas reaches a value of 50 l . s⁻¹ and 10 l . s⁻¹. The water temperature ranges from 26 °C to 35 °C (Krahulec et al., 1977).

Besides the above waters the carbonates of the above units bind also carbonated weakly mineralized waters, e.g. in Trenčianske Mitice (Ca-Mg-HCO₃), Gánovce (Ca-Mg-HCO₃-SO₄) and Lipovce (Ca-Mg-HCO₃), Santovka (Ca-Mg-HCO₃) and Šafárikovo (Ca-Mg-HCO₃, Silica Nappe). Yield of the above waters is ranging within 1 – 151. s⁻¹ and water temperature in the range of 10 – 27 °C.

On carbonates of the Hungarian Central Highlands are bound waters of the sources in Patince (Ca-Mg-HCO₃) and Štúrovo (Ca-Mg-HCO₃-SO₄). The yield of the sources of these areas is ranging within $29-70\,\mathrm{l}$. s⁻¹ and water temperature is in the range of $20-40\,\mathrm{^{\circ}C}$.

Palaeogene sediments of the Inner Carpathian Palaeogene overlay the older tectonic units of the Western Carpathians. These rocks of marine facies have a character of flysch turbidites, which constitute both the filling of Intermountain depressions, but also they build up mountains close to the Klippen Belt: Súl'ovské vrchy, Skorušinské vrchy, Levočské vrchy, Spišská Magura, Bachureň, Šarišská vrchovina Mts.

Mineral waters of the Inner Carpathian Palaeogene are linked to conglomerates and sandstones, and are similar to

Fig. 1.5 Wellhead of borehole OZ-1 (left) and OZ-2 (right) Oravice (Photo: Marcin, 2013)

waters of the Flysch Zone. Cold hydrogen sulphide very weakly mineralized waters of chemical type Ca-Mg-HCO₃ and Na-HCO₃ are in prevail, with yield up to 0.1 l . s⁻¹. In smaller quantities there are present cold carbonated low-mineralized water chemical type Ca-Mg-HCO₃ with similar yield. The most famous sources include Nová Ľubovňa (Ca-Mg-HCO₃, Ca-Mg-Na-HCO₃) with yield 10 l . s⁻¹. Also known are the sources of mineral water in Konská (Na-HCO₃), Slatvina (Ca-Mg-Na-HCO₃-Cl) and Vojkovce (Na-Mg-Ca-HCO₃-Cl) with yield do 0.1 l . s⁻¹.

1.3.4 Mineral waters of sedimentary Neogene

Neogene sediments fill up intermountain depressions and the Vienna, Danube, Southern and the East Slovakian Basins. Neogene mineral waters are tied to the position of the basal clastic rocks, sand and sandstone which alternate with pelites. Neogene mineral water sources are of the highest yield (10 – 20 1 . s⁻¹) and the water temperature ranges from 40 to 90 °C. The waters are bound to sandy sediments of Dacian, Pontian and Pannonian of the Central Depression of the Danube Basin (Franko & Bodiš, 1989).

Depressions in Slovakia filled with Neogene sediments are characterized by hydrogeochemical zonation of mineral water in vertical and horizontal directions. In the near-surface zone and on the edges of the depressions there are present cold and thermal very weakly to weakly mineralized waters of chemical type Ca-Mg-HCO, (e.g. Diakovce borehole – Di-3, Dubové – Spring at Municipality Office, Hodejov - Kúpeľný prameň, Trubín - Medokýš, Horné Plachtince - Medokýš), Na-HCO₃ (e.g. Diakovce – borehole Di-1, Dolná Strehová – borehole M-4, Valaliky – KAH-5) and the same is valid also for chemical types Na-Ca-HCO3, which attain a temperature of 22 °C and TDS 0.3 g . l-1 (e.g. Dolná Strehová-Hámor – borehole S-107) or temperature of merely 12 °C and high TDS 8.5 g. l-1 (Martin-Záturčie – Fatra). Change in the nature of mineral waters from Neogene depends on the depth and position of aquifers and their distance from the edge of the basin, but also on the presence of CO₂. Depthwards and more distant from the edge of the basin occur thermal moderately to strongly mineralized water of chemical type Na-Cl (Gbely – borehole at the swimming pool, Báhoň – borehole B-1, Dunajská Streda – borehole DS-1, Nesvady – borehole K-3, Nová Vieska – borehole NV-1, Cíž – well Hygiea, Buzica – Slaný vrt). Sources with the highest yield $(10 - 201 \cdot s^{-1})$ and temperature $(40 - 90 \, ^{\circ}\text{C})$ have open sections in the sands of Dacian, Pontian and Late Pannonian of the Central Depression of the Danube Basin (Franko et al., 1989).

Sources of mineral waters of the sedimentary Neogene with halitogenic mineralization reach a value of TDS from 1.3 to 292 g . l⁻¹ (Plavecký Peter – sources Vajcovka, Prešov-Solivar – Leopold Shaft). The largest representation of mineral water with this kind of mine- ralization is located in the East Slovakian Basin, where Karpatian and Badenian sediments contain halite.

1.3.5 Mineral waters of neovolcanites

Complex of neovolcanic rocks builds up central part of Slovakia (Štiavnica, Stratovolcano, Stratovolcano in the Kremnické vrchy Mts., stratovolcanoes Poľana, Javorie, Lysec, Čelovce, eroded stratovolcanic relics from the area of Tisovec and Rimavská kotlina Basin) and in the eastern part of Slovakia it is a line of stratovolcanoes of the Slanské vrchy Mts. (stratovolcanoes Šebastovka, Zlatá Baňa, Makovica, Strechov, Bogota, Milič and Bradlo) and Vihorlat (stratovolcanoes Kyjov, Sokolský potok, Morské oko, Diel and Popriečny). Neovolcanite rocks complex is also involved in the sedimentary infill of the Žiarska kotlina Basin, Danube Basin and the East Slovakian Basin. In terms of abundance of mineral water the neovolcanites have the largest representation of resources from the central regions of Slovakia.

Mineral waters of Neovolcanites (Badenian andesites) were explored by deep wells in the Danube Basin (Rusovce – HGB-1, Šurany – S-1) with documented presence of mineral water of chemical type Na-Cl, TDS with 18.6 g . 1-1 and water temperature of 28 °C. Yield at the collar was 0.1 l . s-1 (Bondarenková et al., 1977). Geological exploration well S-1 in Šurany reached the andesite tuffs and andesites at a depth of 1,750 – 2,700 m and documented the presence of mineral water of chemical type Na-Cl with TDS 32.5 g . 1-1.

In the Banská Štiavnica the 910 m deep borehole documented flow of mineral water of chemical type Na-Ca-SO₄-HCO₃, which had the TDS of 2.4 g . l⁻¹ and water temperature of 46 °C (Remšík et al., 2007). Inflow of mineral water occurred from altered vein filling in andesites.

On the western outskirts of Žiarska kotlina Basin and the Vtáčnik mountain range with a presence of faults of the N-S direction 8 carbonic mineral water springs have been documented. In Bukovina there are three springs of mineral water of chemical type Ca-Mg-HCO₃ with TDS of 1.4 g . l⁻¹ to 3.4 g . l⁻¹. North of the village Dolná Ždaňa surges mineral water of chemical type Ca-Mg-Na-HCO₃ in four springs and one well. The TDS of the water amounts to 0.6 g . l⁻¹ to 0.9 g . l⁻¹. West of Zvolen is spring Červený medokýš whose carbonated mineral water is of chemical type Na-Ca-Mg-HCO₃ with TDS of 2.7 g . l⁻¹ and CO₂ content of 2.5 g . l⁻¹. Yield of mineral springs is usually up to 0.1 to 0.2 l . s⁻¹, rarely as in the case of the resources in the Medokýš in Dolná Ždaňa it can reach 0.5 l . s⁻¹ (Krahulec et al., 1978).

1.4 Characteristics of mineral waters aquifers

Aquifers of mineral waters in Slovakia are characterized by lithological and age diversity, reflecting the geological and tectonic setting of the Western Carpathians.

In the individual structural-facies zones of the Western Carpathians in Slovakia there are aquifers, which are located in such a position and having a hydraulic characteristics that are favourable conditions for the accumulation of mineral waters. The amount of mineral waters concentrated in the accumulation area of individual structures of mineral waters is, firstly, depending upon the very nature of the hydrogeological structure (open, closed), secondly it also depends on the extent of the aquifers, the thickness and depth of the deposit.

1.4.1 Aquifers of mineral waters in the Flysch Zone

The Flysch Zone is characterized by the presence of aquifers with dominant fissure permeability. The lower-most unit, whose aquifer has been documented by means of boreholes, was Obidowa-Słopnice-Zboj unit which in the territory of Slovakia was encountered in four wells Oravská Polhora FPJ-1, Zborov Z-1, Smilno S-1, Zboj-1 in the basement of the Magura Nappe. Zboj tectonic breccias and sandstones constitute the principal aquifer of the mineral waters which have been documented in this unit. Hydraulic parameters of this aquifer were obtained only from the well-FTJ 1 where the value of transmissivity coefficient T = 3.87 . 10^{-7} m² . s^{-1} (Zakovič et al., 2009).

In the Magura Nappe the most important aquifers of mineral water are Magura formation of the Krynica lithofacies-tectonic unit, Tvarožec Sandstone in the subsoil of Bialowieza Fm. of the Bystrica lithofacies-tectonic unit and Zlín Fm. (Makovica sandstone) of the Rača lithofacies-tectonic unit.

The Magura Fm. (Čergov Mb. – mostly sandstone facies) builds bulk of the Čergov Mts. and there were realized 23 hydrogeological wells here. Of these, 4 hydrogeological drillings verified the near-surface zone of disintegration (depth of wells up to 50 meters). Estimated coefficient of transmissivity T reached 1.28 . 10⁻⁵ to 2.84 . 10⁻⁴ m² . s⁻¹. Hydrogeological massif was documented by 19 wells. The depth of these wells ranged from 100 to 205 meters. The length of the open sections ranged from 38.1 m to 165 m. The lower part of the open section of wells was located at a depth of 75 m to 187 m from the ground surface. The upper part of the open section was located at a depth of 5.9 m to 20 m from the ground surface. Estimates of the coefficient of transmissivity T reached 5.64. 10-5 to 1.59 . 10⁻³ m² . s⁻¹. The estimate of the coefficient of transmissivity for the near-surface zone of the hydrogeological massif Čergov has lower values compared to the hydrogeological massif. In the drillings verifying the hydrogeological massif decline was observed in measuring the yield of individual wells with their increasing depth and increasing length of the open section (Marcin et al.,

Makovica and Tvarožec sandstones are characterized by the fact that the hydrogeological drillings carried out in these complexes have the highest transmissivity coefficient T in a zone of intense disturbance along the tectonic lines and near-surface zone of disintegration of sandstone complexes up to a depth of 100 m. The geological environment of this nature reaches a value of T 9.8 \cdot 10⁻⁴ m² \cdot s⁻¹ to 9.1 \cdot 10⁻³ m² \cdot s⁻¹. With increasing depth of wells the disturbance of hydrogeological massif fades out along with the value of transmissivity coefficient (Zakovič in Nemčok et al., 1990).

1.4.2 Aquifers of mineral waters in the Klippen Belt

The Klippen Belt is characterized by the occurrence of more resistant, especially limestone cliffs – klippens, protruding from the generally less resistant marly flysch strata forming Klippen envelope. The Klippen Belt consists of

several units that were thrust over each other and from the North these are: Czorsztyń unit, Kysucká unit, Pruské unit, Klapy unit, Orava unit, Manín unit.

Aquifers of mineral waters in this zone are Jurassic limestones (Czorsztyń radiolarian limestone) and limestones of Jurassic to Cretaceous (crinoidal limestone, Pieniny limestone, Rogoznica Mb. Gregorian breccia). In the Klippen Belt of the Ľubovnianska vrchovina Highlands these sediments were assessed using hydro-chemical method on 12 in descending sources at estimated aquifer thickness of the near-surface zone of 50 m. Due to the nature of the ground (karst-fissure permeability) this estimate of the average coefficient of transmissivity should be taken only indicatively. According to this analogy, the interval of estimated coefficient of transmissivity T is from $1 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$ to $3 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$ (Jetel, 1999).

Sedimentary envelope of the Klippen Belt in the Čergov Mts. was evaluated based on seven hydrogeological wells. Of these wells three wells have verified Proč and Jarmuta Palaeogene formations in near-surface zone of disintegration (within 50 meters) and four wells the hydrogeological massif. Estimates of the coefficient of transmissivity for the near-surface zone of disintegration reached T from 1.58 . 10⁻⁵ to 1.74 . 10⁻⁴ m² . s⁻¹. The depth of exploration wells verifying the hydrogeological massif ranged from 100 m to 133 m. The length of the open section ranged from 81.30 m to 123 m. The lower part of the open section of the wells was located at a depth of 100 m to 133 m from the ground surface. The upper part of the open section was located at a depth of 7.0 m to 10 m from the ground surface. Estimates of the coefficient of transmissivity reached from T $1.11 \cdot 10^{-5}$ to $2.60 \cdot 10^{-4}$ m² \cdot s⁻¹ (Marcin et al., 2005).

The Upohlava Fm. of the Klapy unit of the Klippen Belt made up of calcareous sandstones, marlstones and claystones of Albian to Cenomanian was documented by shallow wells in the area of Nosice – Nimnica. The estimated coefficient of transmissivity of these wells was of the order $T=2.8.10^{-7}~\text{m}^2~\text{s}^{-1}$. Hydrogeological wells with a depth of 160-662 meters verify faulted zones of the Upohlava Fm with mineral water, the value of TDS ranged from 3,741 to 3,960 mg . 1^{-1} and water temperature was from 11 °C to 12 °C. The coefficient of transmissivity in these wells T reached from 4.7 . 10^{-6} to 9.38 . 10^{-5} m² . s⁻¹. During hydrodynamic tests the following yields/drawdowns were documented: $Q=0.151.~\text{s}^{-1}/\text{s}=54$ m; $1.01.~\text{s}^{-1}/\text{s}=32$ m; $2.31.~\text{s}^{-1}/\text{s}=34$ m (Urban et al., 1962; Rebro et al., 1978; Rebro et al., 1989).

1.4.3 Aquifers of mineral waters in zone of the Central Western Carpathians

Central Western Carpathians zone is made up of aquifers, which are located in the crystalline, Triassic carbonates of the tectonic units and Inner Carpathian Palaeogene.

The *crystalline rocks* do not contain significant mineral water aquifers although at several sites their sources are present. The most favourable conditions for accumulation of cold mineral water can be found on the tectonic zones of regional character (e.g. Sub-Tatric Fault, Čertovica Line).

For the crystalline rocks of the Central Western Carpathians the presence of mineral water with temperatures exceeding 20 °C is not typical, so it was a little surprise when the implementation of structural geological wells in Spiš-Gemer Ore Mountains detected their presence. During the implementation of wells GVL-1 (Vlachovo) and RS-1 (Cučma) with depth of 1,201.3/1,379.6 meters waters were documented of chemical type Na-HCO, with a temperature of 19 °C or 25 °C. Inflows of thermal nitrogen poorly mineralized water into the well GVL-1 were located at depths of 701 m, 723 m in the zone of metasomatic limestone surrounded by phyllites of the Gelnica Series. In the borehole RS-1 the inflows of very weakly mineralized water were met in the depth interval of 565-647 m in the contact of greisen zone with the phyllites of the Gelnica Series underlain by a granitoid body. Yield at the collar of the borehole GVL-1 stabilized at 2.15 1 . s⁻¹ and at the borehole RS-1 at 11. s⁻¹. Static water pressure at the well head GVL-1 reached the value 0.6 MPa and in the borehole RS-1 it was 0.3 MPa. Based on these results a new hydrogeochemical province of mineral water – nitrogen acratotherms of the Spiš-Gemer Ore Mts. (Franko & Snopko, 1979) has been allocated in the Central Western Carpathians. Metasomatic limestones surrounded by phyllites of the Gelnica Series documented in the borehole GVL-1 had a value of transmissivity coefficient $T = 1.15 \cdot 10^{-3} \text{ m}^2 \cdot \text{s}^{-1}$.

Triassic carbonates (limestone and dolomite) of different tectonic units represent significant aquifers, to which cold and thermal waters are bound. Mineral water sources identified in these rock complexes achieved relatively high yield and belong along with the sources documented in the Neogene sediments among the most important in terms of productivity. Given the nature of the Triassic sediments (limestones and dolomites) in each nappe the following aquifers can be distinguished.

In the sedimentary envelope of the Tatricum unit major aquifers are Gutenstein and Ramsau Dolomites. In the Krížna Nappe the most important aquifers are Gutenstein Limestone, Ramsau Dolomite and Haupt Dolomite in the overlying Lunz Mb. The aquifers of the Choč Nappe and higher units are represented by Gutenstein Limestone, Ramsau Dolomite, Reifling Limestone, Wetterstein Limestone, Haupt Dolomite in the overlying Lunz Mb., Dachstein Limestone. The Silica Nappe as one of the higher units contains the aquifers represented Guteinstein Limestone, Steinalm Limestone, Schreyeralm Limestone, Wetterstein Limestone, Tisovec Limestone, Hallstatt Limestone, Dachstein Limestone. Hydraulic parameters of hydrogeological units in Slovakia have been processed through the wells database. Of this database 25,323 hydrogeological boreholes were involved, which enabled to obtain data on the reinterpretation 16,729 pumping tests. Group of the Mesozoic sediments contained 767 pumping tests (Malík et al., 2007). The values of the coefficient of transmissivity and filtration of the Triassic carbonates, without distinction of tectonic affiliation documents Tab. 1.4. Among those assessed drillings were mostly shallow wells and fewer consisted of data from deep wells.

Transmissivity coefficient values were obtained from the hydrodynamic tests in deep wells in promising geothermal areas of Slovakia. Documented aquifers parameters for mineral waters are listed in the Tab. 1.5. The total number of wells was 147 and 141 of them identified presence of mineral waters and provided information on the nature of the hydrogeological aquifer. Of these, data are available from 77 wells documenting Mesozoic sediments, 58 wells of Neogene sediments and two wells of Neovolcanites complexes. Transmissivity coefficient values were available from 56 wells verifying the Mesozoic sediments, the 49 Neogene sediments and 2 the Neovolcanites complexes.

Mesozoic carbonates in Slovakia are the most important aquifers of mineral waters, delivering a geometric mean of transmissivity coefficient $G(T)=9.08 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$ at standard deviation of log value σ log T=0.90 (Tab. 1.6). In terms of classification Krásný (1993) these aquifers attain a moderate transmissivity (Class III) and very high variability (Class E), which represents very significantly non-uniform geological environment. Drillings carried out in the environment of Mesozoic carbonates are also reported to reach relatively large yields (Md Q = 12.4 l · s - 1/Mn Q = 19.4 l · s - 1); the most productive is the borehole OZ-2 in *Oravice* (Q = 100 l · s - 1 Tab. 1.5).

The highest value of transmissivity coefficient T for Mesozoic carbonates in terms of wells has been documented in the Upper Nitra Basin (Chalmová – HCH-1), Rimavská kotlina Basin (Tornaľa – HM-5) and Žilinská kotlina Basin (Stráňavy – HZK-1). In evaluating the aquifers of each prospective geothermal areas of Slovakia based on the value T among the all wells of the areas (condition over 3 wells in the area) as Upper Nitra Basin, Komárno high block and Rimavská kotlina Basin appear to be the most favourable. Drillings carried out within these areas are mainly located in the discharge areas of the hydrogeological structures and the obtained data of the of the transmissivity coefficient T exhibit considerable variability. Their depth ranged from 158 m to 600 m (Tab. 1.7).

The lowest value of the transmissivity coefficient T for Mesozoic carbonates in terms of wells has been documented in the Topol'čany Embayment and Bánovská kotlina Basin (Topol'čany – FGTz-1) of the Central Neovolcanites – NW part (Lukavica – LKC-4) and Liptovská kotlina Basin (Pavčina Lehota – FGL-1). In evaluating the aquifers of each prospective geothermal area of Slovakia on the basis of available data of the transmissivity coefficient T of all the wells the least favourable appears the Komárno marginal block, Liptovská kotlina Basin, Topol'čany Embayment and Bánovská kotlina Basin (Tab. 1.7). Drillings carried out in these areas were located mainly in the accumulation zones of the hydrogeological structures, except for Bešeňová boreholes, Malé and Veľké Bielice.

Inner Carpathian Palaeogene sediments in Slovakia are located around the Klippen Belt area; from the west, they comprise Myjava-Hričov Group. Its sedimentation was followed by Sub-Tatric Group. Aquifers of mineral waters in the Myjava-Hričov Group is the Súl'ov Fm. In the Sub-Tatric Group – Orava-Podhale section there are

Tab. 1.4 Values of standard specific capacities and geometric means G(T) and G(K) of derived values of transmissivity and hydraulic conductivity coefficients, calculated for different aquifer types in Slovakia (Malík et al., 2007)

No.	Description	Origin and classification	Group	n	M[¹q]	Md[¹q]	G[T]	σ log T	G[K]
83	Cellular dolomites, dolomitic breccias, rauhwackes	Tectonically reduced carbonate rocks	MZ	6	0.309	0.372	5.53 . 10-4	0.51	4.05 . 10-6
84	Metamorphic limestones, carbonates	Metamorphic sediments of Triassic	MZ	5	0.603	0.331	9.32 . 10-4	0.66	8.47 . 10-6
85	Limestones, quartzitic limestones, nodular limestones, limestones with cherts	Sediments of Middle and Late Triassic	MZ	34	1.622	3.236	3.52 . 10-3	0.81	1.91 . 10-4
86	Sandstones, shales, variably beds or intercalations of limestones, dolomites, evaporites, metatuffs, silicites	Sediments of Middle and Late Triassic	MZ	20	0.234	0.182	3.41 . 10-4	0.93	1.34 . 10-5
87	Limestones	Sediments of Middle and Late Triassic	MZ	238	0.339	0.407	6.19 . 10-4	1.06	1.06 . 10-5
88	Limestones and dolomitic limestones, dolomites	Sediments of Middle and Late Triassic	MZ	3	24.547	40.738	4.64 . 10-2	0.47	6.00 . 10-4
89	Dolomites	Sediments of Middle and Late Triassic	MZ	438	0.575	0.589	1.04 . 10-3	0.86	2.37 . 10-5
90	Dolomites with intercalations of shales	Sediments of Middle and Late Triassic	MZ	23	0.724	0.676	1.43 . 10-3	0.71	2.57 . 10 ⁻⁵

Explanation of abbreviations: \mathbf{n} – number of interpreted hydraulic tests on hydrogeological boreholes and wells; $\mathbf{M}(\mathbf{q})$ – arithmetic mean of the standard specific capacity \mathbf{q} [\mathbf{l} . \mathbf{s}^{-1}]; $\mathbf{M}\mathbf{d}(\mathbf{q})$ – median value of the standard specific capacity \mathbf{q} ; $\mathbf{G}(\mathbf{T})$ – geometrical mean of the transmissivity coefficient \mathbf{T} [\mathbf{m}^2 . \mathbf{s}^{-1}]; $\mathbf{\sigma}$ log \mathbf{T} – standard deviation of the transmissivity coefficient logarithm values; $\mathbf{G}(\mathbf{K})$ – geometrical mean of the hydraulic conductivity coefficient \mathbf{K} [\mathbf{m} . \mathbf{s}^{-1}]; \mathbf{MZ} – group of Mesozoic sediments.

Borové and Biely Potok formations and in the Spiš-Šariš section it is Šambron Mb. In southern Slovakia, between Kravany and Štúrovo extend the Palaeogene sediments of Buda facies protrude from the south, which overlay the carbonates of the Hungarian Central Highlands. These sediments together with Cretaceous sediments form an insulator for Triassic carbonate aquifers of the Komárno block (Brodňan & Nemsilová, 1960).

Hydraulic parameters of the aquifers Inner Carpathian Palaeogene and Buda Palaeogene were evaluated in the Slovak territory through the database of hydrogeological wells, from which data were available on the pumping tests. Group sediments of the Inner Carpathian and Buda Palaeogene involved 703 pumping tests (Malík et al., 2007). The transmissivity coefficient and coefficient of hydraulic conductivity values of the above sediments documents Tab. 1.8. Among those assessments were used mostly shallow wells and fewer were obtained from deep wells.

Most famous sources of mineral waters are in the Inner Carpathian Palaeogene of the Eubovňa Spa at Nová Eubovňa and in Malé and Veľké Bielice near Partizánske. Originally, in the Eubovňa Spa there were located 5 sources of mineral carbonic water that reached yield of 0.1 l . s⁻¹ (Krahulec, 1978). Larger quantities of mineral water have been obtained by realization of hydrogeological well LZ-6 in the area of the spring (Zakovič et al., 1993). The borehole reached a depth of 176.1 m and verified inflows of mineral water from graded-bedded coarse-grained sandstones of the Šambron Mb. in the interval from 17.0 to $21.0 \text{ m} - Q = 1.0 \text{ to } 1.5 \text{ l} \cdot \text{s}^{-1}$, and in the interval from 96.0 to $111.0 \text{ m} - Q = 22 \text{ l} \cdot \text{s}^{-1}$. After the final incorporation

of the borehole there followed a three-month trial, which documented an average yield of 11.4 l . s⁻¹ with a water temperature of 9 °C. Water from this source started to be bottled (Zakovič et al., 2006).

Hydrogeological drillings MB-1 (Malé Bielice) and VB-3 (Veľké Bielice) encountered the thermal water in the discharge area in the elevation of the fundament. Wells with a depth of 160 m and 102 m verified Palaeogene breccias of the Borové Fm. The value of transmissivity coefficient T in these sediments was 2.81 . 10^{-3} m² . s¹ and $3.11 \cdot 10^{-3}$ m² . s¹, which significantly exceeds the value of G (T) = $3.58 \cdot 10^{-4}$ m² . s¹ obtained from the evaluation of 60 pumping tests.

1.4.4 Aquifers of mineral waters in sedimentary Neogene

Neogene sediments in Slovakia are significant aquifers, delivering a geometric mean of the transmissivity coefficient G (T) = $5.35 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$ at standard deviation σ log T = 0.51 (Tab. 1.9). In terms of classification by Krásný (1993) the aquifers are of moderate transmissivity (Class III) and higher variability (Class C), which represents rather inhomogeneous geological environment. Drillings carried out in an environment in Neogene sediments achieved relatively balanced yields ($10.01 \cdot \text{s}^{-1} - \text{Mn}$ Q = $10.51 \cdot \text{s}^{-1}$), the most productive are the wells FGG-2 and FGG-3 in Galanta (Q = $251 \cdot \text{s}^{-1}$).

The highest value of transmissivity coefficient T for the Neogene sediments among the wells has been documented in the Central Depression of the Danube Basin (Veľký Meder – C-2), Diakovce – Di-3, Želiezovce – HGŽ-1). The wells with the highest documented values

Tab. 1.5 Deep boreholes verifying the parameters of mineral water aquifers in Slovakia

Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1. s-1]	T [m². s¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l ⁻¹]	Chemical water type
					Central Depi	Central Depression of the Danube Basin	ısin					
Rusovce	HGB-1	1974	1,493	1,067-1,493	Badenian	andesites	0.1	1.14.10-5	28		18.6	Na-CI
Chorvátsky Grob	FGB-1	1974	1,232	971-1,150	Badenian	base clastics	1.9	4.17.10-5	47	0.26	1.9	Na-CI-HCO ₃
Chorvátsky Grob	FGB-1/A	1975	200	276-299	Pontian	sands	3.5	1.43.10-4	24	0.13	0.5	Na-Mg-Ca-HCO ₃
Kráľová pri Senci	FGS-1	1974	810	430-570	Pontian	sands	0.3	8.47.10-5	23	0.01	3.6	Na-Mg-HCO ₃
Kráľová pri Senci	FGS-1/A	1974	1,500	910-1,370	Pontian-Pannonian	sands	13	3.52.104	52	2.01	7.7	Na-HCO ₃ -Cl
Kráľová pri Senci	VMK-1	1992	804.5	439-572.5; 601-784	Pontian	sands	1.2	1.5.10-4	30	0.07	2.8	Na-Mg-HCO3
Senec	BS-1	1981	1,350	928-1,181	Pontian	sands	12	7.88.10-4	49	1.71	2.5	Na-HCO ₃ -Cl
Topoľníky	FGT-1	1975	2,501	1,394-2,487	Pontian	sands	23	1.6.10-3	74	5.68	2.2	Na-HCO ₃ -Cl
Čilistov	FGČ-1	1979	2,500	1,195-1,549	Pannonian	sandstones	15	1.99.10-3	52	2.32	6.9	Na-HCO ₃ -Cl
Dvory nad Žitavou	FGDŽ-1	1980	2,500	1,024-1,607	Pontian	sands	7.2	4.71.104	62	1.42	3.4	Na-HCO ₃ -Cl
Sládkovičovo	FGG-1	1975	1,990	1,212-1,670	Pontian	sands	10.8	5.14.104	62	2.13	3.2	Na-HCO ₃ -Cl
Galanta	FGG-2	1983	2,100	1,706-2,032	Pannonian	sands	25	2.3.10-3	80	8.9	4.9	Na-HCO ₃ -Cl
Galanta	FGG-3	1984	2,102	1,731-1,999	Pannonian	sands	25	4.85.104	77	6.49	5.9	Na-HCO ₃ -Cl
Tvrdošovce	FGTv-1	1978	2,406	1,362-1,637	Pontian	sands	20	3.79.104	70	4.6	2.5	Na-HCO ₃
Horná Potôň	FGHP-1	1978	2,500	1,394-1,804	Pontian	sands	20	1.2.10-3	89	4.43	4.7	Na-Cl-HCO ₃
Horná Potôň	VHP-12-R *	1987	2,100	1,380-1,832	Pontian	sands	22.3	1.7.10-3	89	4.94	4.3	Na-HCO ₃ -Cl
Dunajská Streda	DS-1	1971	2,500	2,183-2,432	Pontian	sands	15.2	2.42.10-4	16	5.82	6.9	Na-Cl-HCO ₃
Dunajská Streda	DS-2	1985	1,600	1,190-1,549	Dacian-Pontian	sands	23	2.83.10-3	55	3.85	1.6	Na-HCO ₃
Čiližská Radvaň	ČR-1	1986	2,513	1,614-2,430	Pontian-Pannonian	sands	9	3.76.104	82	3.3	1.6	Na-HCO ₃ -Cl
Čiližská Radvaň	VČR-16	1990	1,800	1,390-1,745	Pontian	sands	14.5	1.26.10-3	64	2.93	8.0	Na-HCO ₃
Zlaté Klasy – Eliášovce	VZK-10	1987	1,800	1,331-1,457	Pontian	sands	12.5	7.72.10-4	65	2.6	8.3	Na-CI-HCO ₃
Veľký Meder	Č-1	1972	2,502	1,573-1,791	Pontian	sands	10	1.11.10-4	62	2.59	1.1	Na-HCO ₃
Veľký Meder	Č-2	1983	1,503	1,037-1,439	Pontian	sands	18.2	6.93.10-3	57	3.2	6.0	Na-HCO ₃
Šaľa	HTŠ-1	1982	X				0.2 +		22			
Šaľa	HTŠ-2	1983	1,200	880-1,169	Pontian	sands	3.1	3.0.104	42	0.36	1.5	Na-HCO ₃
Šaľa	HTŠ-3	1983	290	73-282	Dacian	sands	5 +	5.5.10-4	18	90.0	0.5	Na-HCO ₃
Šaľa	GTŠ-1	2010	1,800	1,481-1,786	Pannonian	sands, sandstones	15 +	6.04.10-4	69	3.39	4.9	Na-HCO ₃ -Cl
Poľný Kesov	BPK-1	1980	847	387-737	Neogene	sands	-	1.44.10-4	26	0.15	1:1	Na-Ca-HCO ₃

Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1.s-1]	T [m². s-¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l ⁻¹]	Chemical water type
Poľný Kesov	BPK-2	1981	1,200	1,089-1,189	Neogene	sands	4	9.21.10-5	49	9.0	1.8	Na-HCO ₃
Lehnice	BL-1	1985	1,500	1,031-1,455	Dacian-Pontian	sands	23.2	2.1.10-3	54	3.78	2.2	Na-HCO ₃
Diakovce	Di-1	1962	3,303	720-810	Pontian-Pannonian	sands	4		38	0.39	0.5	Na-HCO ₃
Diakovce	Di-2	1982	1,551	1,416-1,536	Pontian-Pannonian	sands	12	1.7.10-3	89	2.66	2.1	Na-HCO ₃ -Cl
Diakovce	Di-3	1983	306	215-275	Dacian	sands	15	5.0.10-3	19	0.25	9.0	Ca-Na-HCO ₃
Vlčany	FGV-1	1982	2,500	1,244-1,852	Pontian	sands	10	1.8.10-4	89	2.22	2.1	Na-HCO ₃
Gabčíkovo	FGGa-1	1982	2,582	1,122-1,926	Pontian	sands	10	2.01.10-3	52	1.64	1.1	Na-HCO ₃
Boheľov	GBP-1 **	1982	2,800	ı	-	•	-		-	-	-	-
Ňárad (Topoľovec)	VTP-11	1988	2,500	1,533-2,482	Pontian-Pannonian	sands	14.6	7.50.10-4	74	3.6	1.2	Na-HCO ₃ -Cl
Zlatná na Ostrove	VZO-13	1990	1,650	1,089-1,625	Pontian-Pannonian	sands	7.5	2.8.10-4	51	1.25	7.5	Na-Cl
Zemianska Olča	VZO-14	1990	1,849	1,555-1,839	Pontian	sands	10	3.2.10-4	74	2.51	2.7	Na-HCO ₃ -Cl
Dunajský Klátov	VDK-15	1990	2,240	1,425-2,222	Pontian-Pannonian	sands	15.4	5.80.10-4	74	3.75	2.4	Na-HCO ₃ -Cl
Nové Zámky	GNZ-1	1983	1,506	1,236-1,473	Pontian	sands	4.5	2.69.10-4	59	0.83	3.2	Na-HCO ₃ -Cl
Nesvady	GN-1	2008	1,505	1,283-1,494	Pontian	sands, sandstones	2.7	1.36.10-4	09	0.5	2.9	Na-HCO ₃
Šurany	GŠM-1	1989	1,500	892-1,400	Pontian	sands	3.5	2.2.10-4	49	0.5	3	Na-CI-HCO ₃
Komárno	M-2	1971	1,060	771-1,025	Pontian-Pannonian	sands	4.5 +		42	0.51	3.9	Na-HCO ₃ -Cl
Komárno	FGK-1	1976	1,970	904-1,082	Pontian-Pannonian	sands	4	9.2.10-5	45	0.5	2	Na-HCO ₃ -Cl
Sered	SEG-1	2011	1,800	1,505-1,779	Pannonian	sandstones	+ 6	2.11.10-4	99	1.94	5.1	Na-HCO ₃ -Cl
Komárno high block												
Patince	SB-1	1959	226	130-160	Triassic	limestones	29.1		26		0.7	Ca-Mg-HCO ₃
Patince	SB-2	1972	160	129-146	Lias-Triassic	limestones	45		27	2.26	0.7	Ca-Mg-HCO ₃
Patince	SB-3	1982	170	132-167	Triassic	limestones	29.4		26	1.35	0.7	Ca-Mg-HCO ₃
Virt	JRD	1973	260		Triassic	limestones, dolomites	9.9		26	0.3	0.7	Ca-Mg-HCO ₃
Virt	HVB-1	1973	241	139-233	Triassic	limestones, dolomites	10+	2.76.10-3	26	0.46	0.7	Ca-Mg-HCO ₃
Virt	vrt VŠE	1976	280	155-263	Triassic	limestones, dolomites	18.3 +	2.07.10-4	24	69.0	0.7	Ca-Mg-HCO ₃
Štúrovo	FGŠ-1	1975	210	77-128	Triassic	dolomitic limestones	70	2.56.10-2	40	7.33	0.8	Ca-Mg-HCO ₃ -SO ₄
Štúrovo	VŠ-1	1988	125	65-113	Triassic	dolomites, limestones	49	1.36.10-2	39	4.86	0.7	Ca-Mg-HCO ₃ -SO ₄
Obid	FGO-1	1979	1,000	736-1,000	Triassic	dolomites, limestones	2.1	5.01.0-3	20	0.05	8.0	Ca-Mg-HCO ₃
Kravany	FGKr-1	1979	1,021	723-920	Triassic	dolomites, limestones	5.5	2.04.10-4	20	0.12	0.8	Ca-Mg-HCO ₃
Komárno marginal block	olock											
Komárno	M-1	1967	1,221	1,140-1,221	Mesozoic	limestones, dolomites	1.6		42	0.18	2.2	Na-Ca-Mg-SO ₄ - HCO ₃ -Cl

Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1.s-1]	T [m². s¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l-1]	Chemical water type
Komárno	M-3	1976	1,184	1,139-1,184	Jurassic, Triassic	dolomitic limestones	5	1.4.10-4	51	0.75	3.1	Ca-Na-Mg-SO ₄ -Cl- HCO ₃
Komárno	FGK-1	1976	1,970	1,696-1,964	Triassic	limestones, dolomites	3.3	1.5.10-4	64	0.67	2.9	Ca-Na-Mg-SO ₄ -Cl
Marcelová	GTM-1	1987	1,763	1,037-1,761	Neogene, Triassic	conglomerates, limestones	9	1.7.10-4	99	1.02	06	Na-Cl
Levice block												
Podhájska	Po-1	1973	1,900	1,155-1,740	Badenian, Triassic	conglomerates, limestones	53		80	14.42	19.6	Na-Cl
Podhájska	GRP-1*	1986	1,470	995-1,365	Badenian, Triassic	conglomerates, dolomites, limestones	28	1.97.10-3	69	6.32	19.2	Na-Cl
Dubník Depression												
Bruty	VTB-1	1990	1,927	1,599-1,905	Badenian	sandstones, conglomerates	15+		75	2.4	30	Na-Cl
Svätý Peter	PTG-11	1990	1,856	972-1,321	Neogene	sand	9		50	88.0	5.3	Na-CI
Želiezovce	HGŽ-1	1972	350	100-234	Neogene	sands, sandstones	13.5 +	3.05.10-3	18	0.17	1.6	Na-Ca-HCO ₃
Želiezovce	HGŽ-3	1990	916	342-900	Badenian	clastics	1.5 +		52	0.25	10	Na-SO ₄ -C1
Komjatice Depression	uc											
Komjatice	G-1	1989	1,830	1,509-1,700	Pannonian	sands, sandstones	12		78	2.5	20.1	Na-Ca-Cl-HCO ₃
Topolčany embayment and Bánovce Basin	ent and Bánovce	Basin										
Malé Bielice	MB-3	1974	160	80-100	Palaeogene	carbonatic breccias	8.5	2.81.10-3	40	0.89	1.1	Ca-Mg-HCO ₃
Veľké Bielice	VB-3	1983	102	27-90	Palaeogene	carbonatic breccias	8.3 +	3.11.10-3	39	0.83	0.8	Ca-Mg-HCO ₃
Brodzany	HGT-9	1982	160	133-139	Triassic	carbonates	1.7 +	1.16.104	32	0.12	1.5	Ca-Mg-HCO ₃ -SO ₄
Topoľčany	FGTz-1	1985	2,106	1,512-1,917	Triassic	carbonates	2.0 +	6.70.10-6	55	0.33	5.9	Na-HCO ₃ -SO ₄
Partizánske	FGTz-2	2004	866	401-970	Triassic	dolomites, limestones	12.5 +	3.55.10-3	33	0.94	0.7	Ca-Mg-HCO ₃
Partizánske	HGTP-1	2000	500	265-474	Triassic	carbonates	18.8 +	7.83.10-3	20	0.37	0.7	Ca-Mg-HCO ₃
Bánovce nad Bebravou	BnB-1	1984	2,025	2,000-2,025	Triassic	dolomites	17 +	6.37.10-5	40	1.78	0.7	Ca-Mg-HCO ₃ -Cl
Trnava embayment												
Koplotovce	KB-1	1976	118	78-108	Triassic	dolomites	14.5	6.87.10-3	24	0.55	2.52	Ca-Mg-HCO ₃ -SO ₄
Piešťany embayment	t											
Nové Mesto nad Váhom-Zelená Voda	GZV-1	2008	1,206	985-1,155	Mesozoic	carbonates	10	1.82.10-4	19.4	0.18	1.41	Mg-Ca-SO ₄
Vienna Basin												
Šaštín-Stráže	RGL-2	1983	2,605	2,005-2,570	Eggenburgian, Triassic	conglomerates, limestones	12	2.61.104	73	2.91	10.9	Na-Cl

Machine Reval RG1-1 1984 2100 1242-2065 Eggenburgiums Conglomenteds 25 2.58 (10) 7.58 (10) 6.99 6.99 1.01 1.242-2065 Eggenburgiums Immension Blokkek Staling BR5-21 1.99 1.76 1.261-2065 Irrassing 2.2 2.28 (10) 2.2 0.6 3.550, 500-550 3	Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1.s ⁻¹]	T [m². s¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l ⁻¹]	Chemical water type
Station BIESA 1761 1.761 <t< td=""><td>Lakšárska Nová Ves</td><td>RGL-1</td><td>1984</td><td>2,100</td><td></td><td></td><td>conglomerates, limestones</td><td>25</td><td>2.58.10-3</td><td>78</td><td>65.9</td><td>8.9</td><td>Na-Ca-Cl-SO₄</td></t<>	Lakšárska Nová Ves	RGL-1	1984	2,100			conglomerates, limestones	25	2.58.10-3	78	65.9	8.9	Na-Ca-Cl-SO ₄
SSS IIII IRS-3 1 761 carbonates deformites .	Ilava Basin												
NR EACT 1974 1,308 Inchesion curbonates 22 3,03,10° 24 0.6 0.5 With Basin 1RK-22 1974 1,308 1,308 1,308 1,31 0.6 0.6 0.6 0.6 With Basin 1RK-10 1991 1,831 1,374,180 1,731 4 4.2 1,731 6.4 0.6 6.0 9.8 1,631 1,731 4 2.2 0.8 0.8 1.0 0.8 1.0 0.8	Belušské Slatiny	BHS-3	1990	1,761	1	1	1				,	ı	
y HZK-2 1974 1,388 Lioact-1,308 Trinssic carbonates 22 3,010 ² 2,6 0,6 0,6 0,6 mill portulus HZK-2 1990 600 35,5-500, 500-559 Trinssic carbonates 13,4 7,310 ⁴ 42 1,51 0,6 Mim Basin HZK-1 1990 1,831 Trinssic carbonates 22 3,010 ⁴ 42 1,51 0,6 Mak BCH-3 1980 1,831 Trinssic carbonates 22 2,78,10 ⁴ 39 0,5 1,9 Mak BCH-3 1983 1,831 Trinssic carbonates 22 2,78,10 ⁴ 39 0,5 1,9 Mak BCH-3 1980 1,5 1,204 Trinssic carbonates 22 2,78,10 ⁴ 39 0,5 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 <t< td=""><td>Žilina Basin</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Žilina Basin												
y HZK2 1990 600 33.53-500, \$00.500, \$00.600 Fundamental Britance analytemental RTS-11 127 127 24 0.84	Rajec	RK-22	1974	1,308	1,064-1,308	Triassic	carbonates	22		26	9.0	0.5	Ca-Mg-HCO ₃
Mile Deruba RTS-1 1991 1,831 1,370-1,830 Triassic carbonates 134 7,310-4 42 151 0.5 Mirat Basin 3 2,28 - - - - - - - - Maria BCH-1-3 1993 1,831 1,677-1,831 Triassic carbonates 50 2 278.10° 59 4.08 0.6 9 Maria BCH-1-3 1992 200 50-194 Triassic carbonates 13,4 9.25,10° 39 0.6 13 Maria HCH-1 1992 200 90-140 Prinassic carbonates 15 9.25,10° 37.5 141 1.06 1.0 Maria HGH-1 1992 1,201 862-1,799 Permina-Mesconic carbonates 15 2.02,10° 1.41 1.06 1.41 1.06 1.41 1.06 1.41 1.06 1.42 1.41 1.06 1.42 1.41 1.06 </td <td>Stráňavy</td> <td>HŽK-2</td> <td>1990</td> <td></td> <td>335-500; 500-559</td> <td>Palaeogene- -Triassic</td> <td>sandstones, dolomites</td> <td>22</td> <td>3.03.10-2</td> <td>24</td> <td>0.84</td> <td>0.4</td> <td>Ca-Mg-HCO₃-SO₄</td>	Stráňavy	HŽK-2	1990		335-500; 500-559	Palaeogene- -Triassic	sandstones, dolomites	22	3.03.10-2	24	0.84	0.4	Ca-Mg-HCO ₃ -SO ₄
vivi HZK-10 1933 2.288 <th< td=""><td>Kamenná Poruba</td><td>RTŠ-1</td><td>1991</td><td>1,831</td><td>1,370-1,830</td><td>Triassic</td><td>carbonates</td><td>13.4</td><td>7.3.10-4</td><td>42</td><td>1.51</td><td>0.5</td><td>Ca-Mg-HCO₃</td></th<>	Kamenná Poruba	RTŠ-1	1991	1,831	1,370-1,830	Triassic	carbonates	13.4	7.3.10-4	42	1.51	0.5	Ca-Mg-HCO ₃
viva Box-la 1972 1.677-1.851 Triassic carbonates 20 27.81.0° 39 4.08 0.8 wå BCH-3 198 1.85 1.677-1.851 Triassic carbonates 5.0° 2.7° 39 0.5 1.9 wå BCH-3 198 1.50 3-0-194 Triassic carbonates 1.3° 2.0° 39 0.5 1.9 vå HCH-1 1992 200 3-0-194 Triassic carbonates 1.3° 2.0° 39 0.5 1.9 vå ECHn-1 2002 475 370-430 Pelaleegene-Triassic forecties, dolomites 2.5° 2.0° 3.9° 0.0° 1.0° vå ECHn-1 2002 4-65.6 Acesone carbonates 1.5° 2.0° 1.4° 1.0° 1.0° 1.0° yHij TTS-1 198 1.50 34-5.6 Triassic carbonates 1.2° 2.2° 2.0° 0.4 1.0°	Žilina	HŽK-10	1993	2,258	1	1	1				1	ı	
wide Fi-NB II 1980 1.85I Trisssic carbonates 22 2.78.10³ 59 4.08 0.5 19 wide BCH3 1983 150 30-120 Trisssic carbonates 134 9.25.10³ 33 0.5 19 wide FGH9-1 1992 2.00 30-130 Palteogene-Trissic carbonates 15.7 2.02.10³ 33 1.01 1.3 wide FGH9-1 2.00 4.75 370-430 Palteogene-Trissic carbonates 15.7 2.02.10³ 37.5 1.41 1.06 ske Teplice TTK-1 197 46-56 Mesozoic carbonates 3.5 2.02.10³ 37.5 1.41 1.06 y Hij HM-2 1989 4.03 80-140 Mesozoic carbonates 1.2 2.02.10³ 3.75 1.41 1.06 y Hij HM-2 1989 4.64 Mesozoic carbonates 1.2 5.68.10³ 3.0 1.7 1.7	Horná Nitra Basin												
vvá BCH-3 1983 150 30-120 Trinssic enthonates 50+ 30 65 1.9 1.0 vvá HCH-1 1992 200 30-194 Trinssic enthonates 134* 925.10* 33 1.01 1.3 vá HCH-1 200 475 370-430 Palacogene-Trinssic preceits, dolomites 25* 19 0.05 0.4 vá HH-1 2010 1,201 Recentario, dolomites 15* 202.10* 37.5 141 1.06 assist 1881 1,201 Recentario, dolomites 15* 202.10* 37.5 141 1.06 3481 1841 201 46-56 Mesozic enthonates 3.5 27.02.10* 37.5 1.4 1.06 y Háj HM-2 1989 4.04 Mesozic enthonates 3.5 2.02.10* 37.5 1.6 1.6 y Háj HM-2 1989 4.64 Mesozic en	Laskár	Š-1-NB II	1980	1,851	1,677-1,851	Triassic	carbonates	22	2.78.10-3	59	4.08	8.0	Ca-Na-Mg-HCO ₃ -SO ₄
wå HCH-1 1992 200 50-194 Triassic earbonates 134 9.2.10° 33 1.01 1.03 vå FGHn-1 2002 475 370-430 Palaeogene-Triassic preceize, dolomites 157 2.5.1 1.0 1.0 1.0 sask-Teplic THK-1 1.0 1.2 Resozoic carbonates 3.5 4.5 3.0 1.0 1.0 yHaj THK-1 1.9 4.0 Mesozoic carbonates 3.5 8.0 3.7 1.0 1.0 yHaj THK-1 1.9 4.0 Mesozoic carbonates 3.5 4.2 3.0 1	Chalmová	BCH-3	1983	150	30-120	Triassic	carbonates	5.0 +		39	0.5	1.9	Ca-Mg-SO ₄ -HCO ₃
viá FGHn-1 2002 475 370-430 Palaeogene-Triassic breccias, dolomites 2.5° 19 0.05 0.4 viá RH-1 2010 1,201 862-1,179 Permian-Mesozoic sandstones, carbonates 15° 202 10 ⁴ 37.5 1.41 1.06 ake Teplice TTK-1 1977 56 46-56 Mesozoic carbonates 3.5 4° 37.5 1.41 1.06 y Háj HM-2 1989 4.03 90-140 Mesozoic carbonates 1.24 4.2 5.68 10 ³ 4.2 0.45 1.5 y Háj TTK-1 1988 1.503 810-1,124 Triassic carbonates 1.24 4.2 6.0 7.2 1.5 na Basin Assistant Assistant<	Chalmová	HCH-1	1992	200	50-194	Triassic	carbonates	13.4+	9.25.10-2	33	1.01	1.3	Ca-Mg-SO ₄ -HCO ₃
vá RH-1 2010 1,201 Re2-1,179 Permian-Mesozoic sandstones, carbonates 157 202,10+ 37.5 141 1006 ske Teplic TTK-1 1977 56 46-56 Mesozoic carbonates 3.5 1.5 27.7 0.18 1.5 y.Háj HM-2 1989 403 90-140 Mesozoic carbonates 4.7 56.810 ³ 42.0 0.18 1.5 y.Háj HM-2 1989 1,503 810-1,124 Triassic carbonates 4.7 56.810 ³ 42.0 0.43 1.6 y.Háj TTŠ-1 1989 1,503 810-1,124 Triassic carbonates 3.2 1.0 5.4 5.6 1.6 950-1,565 Triassic 400mites 3.3 1.0 3.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0	Handlová	FGHn-1	2002	475	370-430	Palaeogene-Triassic	breccias, dolomites	2.5 +		19	0.05	0.4	Ca-Mg-HCO ₃
aske Teplice TTK-1 197 46-56 Mesozoic carbonates 3.5 27 0.18 1.5 y Háj TTŠ-1 1989 403 90-140 Mesozoic carbonates 4+ 5.68.10³ 42 0.45 1.6 y Háj TTŠ-1 1989 1,503 810-1,124 Triassic carbonates 12.4 5.4 2.02 2.5 na Basin 2GT-3 1990 2,461 - </td <td>Handlová</td> <td>RH-1</td> <td>2010</td> <td>1,201</td> <td>862-1,179</td> <td>Permian-Mesozoic</td> <td>sandstones, carbonates</td> <td>15 +</td> <td>2.02.10-4</td> <td>37.5</td> <td>1.41</td> <td>1.06</td> <td>Ca-Mg-SO₄-HCO₃</td>	Handlová	RH-1	2010	1,201	862-1,179	Permian-Mesozoic	sandstones, carbonates	15 +	2.02.10-4	37.5	1.41	1.06	Ca-Mg-SO ₄ -HCO ₃
ske Teplice TTK-1 1977 56 46-56 Mesozoic carbonates 3.5 5.68.10³ 27 0.18 1.5 y Háj HM-2 1989 403 90-140 Mesozoic carbonates 4° 5.68.10³ 42 0.45 1.6 y Háj TTŠ-1 1988 1,503 810-1,124 Triassic carbonates 12.4 5.68.10³ 54 2.02 2.5 na Basin A 2.461 Triassic dolomites 35 32.110³ 58 1.09 0.8 s: OZ-1 197 5.04 342-561 Triassic dolomites 35 3.110³ 56 17.2 1.3 ssasin A S 1.315-1,570 Triassic dolomites 67 3.19.10³ 56 17.2 1.3 vá FBe-1 2.06 400 1.540-1,987 Triassic carbonates 27 1.16.10³ 66 6.3 3.3 3.6 </td <td>Turiec Basin</td> <td></td>	Turiec Basin												
yy Háj HM-2 1989 403 90-140 Mesozoic earbonates 4+ 5.68.10³ 42 6.045 1.66 yy Háj TTŠ-1 1988 1,503 810-1,124 Triassic earbonates 12.4 5.68.10³ 54 2.02 2.50 na Basin 2GT-3 1990 2,461 Triassic dolomites 35 32.110³ 28 1.09 8.8 sssin OZ-2 1991 1,601 950-1,565 Triassic dolomites 100 3.08.10³ 56 17.2 1.3 Basin Act 1,97 2,12 Triassic carbonates 67 3.19.10³ 56 17.2 1.3 vá FGL-1 1987 1,587 Triassic Garbonates 27 116.10³ 55 0.23 3.6 vá FBe-1 2006 400 Triassic carbonates 27 116.10³ 43 2.5 0.23 3.6 vá FB	Turčianske Teplice	TTK-1	1977	99	46-56	Mesozoic	carbonates	3.5		27	0.18	1.5	Ca-Mg-HCO ₃ -SO ₄
yy Háj TTŠ-1 1988 1,503 810-1,124 Triassic carbonates 124 54 54 2.02 2.5 ana Basin s. ZGT-3 1990 2,461 - Friassic dolomites 35 3.21.10³ 58 1.09 9.8 s. Cor.2 1991 1,601 950-1,565 Triassic dolomites 30 3.08.10³ 56 1.09 0.8 s. Sasin A. 2,129 1,540-1,987 Triassic carbonates 6° 3.19.10³ 50 3.2 1.3 3.2 <td>Diviacky Háj</td> <td>HM-2</td> <td>1989</td> <td>403</td> <td>90-140</td> <td>Mesozoic</td> <td>carbonates</td> <td>+ 4</td> <td>5.68.10-3</td> <td>42</td> <td>0.45</td> <td>1.6</td> <td>Ca-Mg-HCO₃-SO₄</td>	Diviacky Háj	HM-2	1989	403	90-140	Mesozoic	carbonates	+ 4	5.68.10-3	42	0.45	1.6	Ca-Mg-HCO ₃ -SO ₄
na Basin CGL-1 1990 2,461 Triassic dolomites 35 3.21.10-3 28 1.09 0.8 state basin OZ-1 1979 600 342-561 Triassic dolomites 100 3.08.10-3 28 1.10-3 1.8 1.8 1.3 telebra COZ-2 1991 1,601 950-1,565 Triassic carbonates 6+ 3.19.10-3 56 1.72 1.3 vá FGL-1 1987 1,540-1,987 Triassic dolomites 6+ 3.19.10-3 32 0.43 0.5 vá FBe-1 1987 1,540-1,987 Triassic dolomites 5.4 1.16.10-4 62 5.3 0.43 3.6 vá FBe-1 2006 400 Mesozoic carbonates 32 66 68.3 3.9 4.4 ký Tmove ZGL-3 1992 2,50 1,624-2,486 Triassic carbonates 31 1.02.10-3 43 2.39	Diviacky Háj	TTŠ-1	1988	1,503	810-1,124	Triassic	carbonates	12.4		54	2.02	2.5	Ca-Mg-HCO ₃ -SO ₄
OZ-1 1979 600 342-561 Triassic dolomites 35 3.21.10³ 28 1.09 0.8 OZ-2 1991 1,601 950-1,565 Triassic dolomites 100 3.08.10³ 56 17.2 1.3 FGL-1 1977 2,129 1,315-1,570 Triassic dolomites 27 1.16.10³ 62 5.3 3 FGL-1 1987 1,540-1,987 Triassic dolomites 27 1.16.10³ 62 5.3 3.6 FGTB-1 2016 400 <t< td=""><td>Martin</td><td>ZGT-3</td><td>1990</td><td>2,461</td><td>ı</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td></t<>	Martin	ZGT-3	1990	2,461	ı	-	-	-			-		-
OZ-1 1979 600 342-561 Triassic dolomites 35 3.21.10³ 28 1.09 0.8 OZ-2 1991 1,601 950-1,565 Triassic dolomites 100 3.08.10³ 56 17.2 1.3 FGL-1 1977 2,129 1,315-1,570 Triassic carbonates 6+ 3.19.10³ 32 0.43 0.5 FGL-1 1987 1,987 1,540-1,987 Triassic dolomites 27 1.16.10⁴ 62 5.3 3 FBe-1 2006 400 Triassic carbonates 32 66 6.83 3.6 ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 20 + 1.82.10³ 43 2.39 4.4 ZGL-2A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10³ 60 5.18 4.7	Skorušina Basin												
OZ-20 1991 1,601 950-1,565 Triassic dolomites 100 3.08.10 ⁻³ 56 17.2 1.3 FGL-1 Total 1,540-1,987 Triassic dolomites 6+ 3.19.10 ⁻³ 32 0.43 0.5 FGL-1 1987 1,540-1,987 Triassic dolomites 27 1.16.10 ⁻⁴ 62 5.3 3.6 FGL-1 1096 400 400 Triassic carbonates 32 1.16.10 ⁻⁴ 62 5.3 3.6 FGTB-1 2016 1,833 1,623-1,814 Mesozoic carbonates 32 66 6.83 3.6 ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 31 1.02.10 ⁻³ 60 5.18 4.7	Oravice	0Z-1	1979	009	342-561	Triassic	dolomites	35	3.21.10-3	28	1.09	8.0	Ca-HCO ₃
FGL-1 1977 2,129 1,315-1,570 Triassic carbonates 6+ 3.19.10-5 32 0.43 0.5 ZGL-1 1987 1,987 1,540-1,987 Triassic dolomites 27 1.16.10-4 62 5.3 3 FBe-1 2006 400 400 Mesozoic carbonates 32 66 6.83 3.6 ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 20+ 1.82.10-3 43 2.39 4.4 ZGL-2/A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10-3 60 5.18 4.7	Oravice	OZ-2	1661	1,601	950-1,565	Triassic	dolomites	100	3.08.10-3	56	17.2	1.3	Ca-Mg-HCO ₃
FGL-1 1977 2,129 1,315-1,570 Triassic carbonates 6+ 3.19.10 ³ 32 0.43 0.5 ZGL-1 1987 1,540-1,987 Triassic dolomites 27 1.16.10 ⁴ 62 5.3 3 FBe-1 2006 400 400 Mesozoic carbonates 32 1.6 66 6.83 3.6 ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 20 + 1.82.10 ³ 43 2.39 4.4 ZGL-2/A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10 ³ 60 5.18 4.7	Liptov Basin												
ZGL-1 1987 1,540-1,987 Triassic dolomites 27 1.16.10-4 62 5.3 3 FBe-1 2006 400	Pavčina Lehota	FGL-1	1977	2,129	1,315-1,570	Triassic	carbonates	+ 9	3.19.10-5	32	0.43	0.5	Mg-Ca-HCO ₃ -SO ₄
FBe-I 2006 400 Mesozoic carbonates 32 66 6.83 3.6 ZGL-3 1,93 1,623-1,814 Mesozoic carbonates 20 + 1,82.10 ³ 66 6.83 3 ZGL-3/A 1992 2,373 1,475-2,365 Triassic carbonates 31 1.02.10 ³ 60 5.18 4.7	Bešeňová	ZGL-1	1987	1,987	1,540-1,987	Triassic	dolomites	27	1.16.10-4	62	5.3	3	Ca-Mg-SO ₄ -HCO ₃
FGTB-1 2011 1,833 1,623-1,814 Mesozoic carbonates 32 66 6.83 3 ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 20+ 1.82.10³ 43 2.39 4.4 ZGL-2/A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10³ 60 5.18 4.7	Bešeňová	FBe-1	2006	400				5.4		25	0.23	3.6	Ca-Mg-HCO ₃ -SO ₄
ZGL-3 1990 2,373 1,475-2,365 Triassic carbonates 20 + 1.82.10 ⁻³ 43 2.39 4.4 ZGL-2/A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10 ⁻³ 60 5.18 4.7	Bešeňová	FGTB-1	2011	1,833	1,623-1,814	Mesozoic	carbonates	32		99	6.83	3	Ca-Mg-SO ₄ -HCO ₃
ZGL-2/A 1992 2,500 1,624-2,486 Triassic carbonates 31 1.02.10 ⁻³ 60 5.18 4.7	Liptovská Kokava	ZGL-3	1990	2,373	1,475-2,365	Triassic	carbonates	20 ⁺	1.82.10-3	43	2.39	4.4	Ca-Mg-HCO ₃ -SO ₄
	Liptovský Trnovec	ZGL-2/A	1992	2,500	1,624-2,486	Triassic	carbonates	31	1.02.10-3	09	5.18	4.7	Ca-Na-Mg-HCO ₃ -SO ₄

Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1.s ⁻¹]	T [m². s-¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l ⁻¹]	Chemical water type
Levoča Basin W and S part	S part											
Vrbov	Vr-1	1982	1,742	1,493-1,734	Triassic	dolomites	28.3	2.40.10-3	56	4.86	4	Ca-Mg-HCO ₃ -SO ₄
Vrbov	Vr-2	1989	2,502	1,539-1,983	Triassic	carbonates	33	6.38.104	59	80.9	4	Ca-Mg-HCO ₃ -SO ₄
Letanovce	HKJ-4	1989	209	408-589	Triassic	carbonates	8	8.80.10-4	25	0.33	9.0	Ca-Mg-HCO ₃
Arnutovce	HKJ-3	1990	1,133	489-1,133	Triassic	carbonates	11.8	1.40.10-3	31	0.79	1.4	Ca-Mg-HCO ₃
Poprad	PP-1	1994	1,205	634-1,128	Triassic	dolomites	61.2	6.54.10-3	48	9:9	2.8	Ca-Mg-SO ₄ -HCO ₃
Stará Lesná	FGP-1	1995	3,616	1,431-2,092	Triassic	dolomites	22	5.41.104	58	3.95	3.2	Ca-Mg-HCO ₃
Veľký Slavkov	VSČ-1	2007	2,400	1,877-2,353	Mesozoic	dolomites, limestones	27	3.10.104	57	4.75	3.5	Ca-Mg-HCO ₃
Danišovce	DH-1	1997	1,000	800-1000	Permian, Mesozoic	breccias, sandstones, shales			1	1		1
Veľká Lomnica	GVL-1	2006	2,100		Triassic	carbonates	35		62	88.9		
Levoča Basin NE part	t											
Plavnica	Pl-1	1988	3,500	2,306-3,360	Palaeogene, Triassic	Palaeogene, Triassic sandstones, carbonates	ď		65	12	10	Na-Cl
Plavnica	PI-2	1989	3,500	2,500-3,010	Palaeogene, Triassic	sandstones, carbonates	4		53	0.57	12.3	Na-Cl
Lipany	L-1****	1978	4,000	3,184-3,390	Triassic	dolomites	10	1.87.104	85	2.93	9.4	Na-HCO ₃ -Cl-SO4
Lipany	L-2	1981	3,500	3,176-3,245	Triassic	dolomites	4.5		51	89.0	8.7	Na-Cl
Košice Basin												
Valaliky	KAH-3	1976	190	158-171	Neogene	sandy clay	7.2 +	7.27.10-4	21	0.18	2.2	Na-CI
Valaliky	KAH-5	1976	160	124-148	Neogene	gravels, sands	14.3 +	1.19.10-3	21	0.36	0.7	Na-HCO ₃
Šebastovce	KAH-6	1976	164	45-149	Neogene	gravels, sands	10 +	2.44.10-3	18	0.12	3.6	Na-Ca-CI-HCO ₃
Košice	G-4	1982	310	72-273	Triassic-Permian	dolomites, palaeoandesites	4.9 +	1.91.10-3	26	0.22	4.5	Na-Ca-Mg-HCO ₃ -Cl
Ďurkov	GTD-1	1998	3,210	2,109-3,155	Triassic	dolomites	99	2.09.104	125	25	30	Na-Cl
Ďurkov	GTD-2***	1998	3,151	2,600-3,104	Triassic	dolomites	50	1.34.104	129	24	30	Na-Cl
Ďurkov	GTD-3***	1999	2,252	2,223-2,246	Triassic	dolomites	65		123	29	31	Na-Cl
Humenne ridge												
Sobrance	TMS-1	1975	823	487-625	Neogene	sands. sandstones	4	3.80.104	29	0.25	11.9	$Ca-Na-CI-SO_4$
Kaluža	GTH-1	2005/2013	600/940.1	454-594; 600-836; 847-938	Mesozoic	dolomites, limestones	+ 4	4.15.10-5	39.4	0.41	13.9	Na-Cl
Central Slovakian Neogene volcanics NW part	eogene volcanics	NW part										
Kremnica	KŠ-1***	1976	531	476-531	Mesozoic	carbonates	23.2	7.71.10-4	47	3.1	1.5	$Ca-Mg-SO_4-HCO_3$
Vyhne	H-1	1967	92	19-78	Triassic	limestones, dolomites	5	5.73.10-3	36	0.44	1.1	Ca-Mg-HCO ₃ -SO ₄

Locality	Borehole	Year of realization	Deep of borehole [m]	Open interval of borehole [m]	Age of aquifer	Lithology of aquifer	Yield [1.s-1]	T [m². s¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g.l ⁻¹]	Chemical water type
Vyhne	HGV-3	2009	64	46-54	Mesozoic	limestones	5.5 +	2.05.10-2	29	0.32	6.0	Ca-HCO ₃
Zlatno	R-3	1975	710	660-710	Neogene, Triassic	palaeoandesites, dolomites	10		35	0.84	5	Ca-Mg-SO ₄ -HCO ₃
Lukavica	LKC-4	1980	928	792-851	Triassic	carbonates	10	1.68.10-5	35	8.0	0.4	Ca-Mg-HCO ₃
Sklené Teplice	ST-4	1981	1,820	1,453-1,695	Triassic	carbonates	16	2.51.10-4	57	3	2.6	Ca-SO ₄ -HCO ₃
Sklené Teplice	ST-5	1987	1,001	800-1,001	Triassic	dolomites	+ 4.4	2.15.10-4	46	0.57	2.7	Ca-Mg-SO ₄ -HCO ₃
Sielnica	KMV-1	2004	417	353-407	Mesozoic	limestones	3	7.74.10-3	33	0.23	2.2	Ca-SO ₄
Topoľčianky	KD-1	1984	500	404-500	Triassic	dolomites	3.5		27	0.17	4.5	Ca-Mg-SO ₄ -HCO ₃
Žiar nad Hronom	RGŽ-2	2000	2,500	1	ı							1
Central Slovakian Neogene volcanics SE part	sogene volcanics	SE part										
Kalinčiakovo	HBV-1	1968	08	15-70	Triassic	limestones	25 +		25	1.05	1	Ca-Mg-HCO ₃ -SO ₄
Kalinčiakovo	HBV-2a	1968	99	11 to 49	Triassic	limestones	11.1 +		25	0.46	1	Ca-Mg-HCO ₃ -SO ₄
Santovka	B-3A	1998	73	45-64	Badenian	sandstones, lithothamnium limestones	15.5		26	0.71	5.7	Ca-Mg-HCO ₃
Banská Štiavnica	HR-1	2005	910	748-829	Neogene	andesites, altered veins filling	12.5 +	5.13.10-4	46	1.62	2.4	Na-Ca-SO ₄ -HCO ₃
Horné Strháre – Trei	Trenč Graben											
Dolná Strehová	M-4	1956	520	520	Neogene	sand	2.5		35.4	0.21	0.4	Na-HCO ₃
Dolná Strehová	HGDŠ-1	1985	625	593-615	Neogene	sand	0.15/4.0 +	8.85.10-4	35.2	0.09/0.34	0.4	Na-HCO ₃
Slovenské Kľačany	TSK-1	1991	009	500-560; 581-587	Neogene	sand	2	1.70.10-3	38	0.2	0.7	Na-HCO ₃
Vinica	HG-18		320		Neogene	sand	10		21	0.25	3.1	Na-HCO ₃
Lučenec Basin – Rapovce structure	ovce structure											
Rapovce	GTL-2	2007	1,501	957-1,439	Triassic	carbonates	11.2	5.24.10-4	38	1.04	12.6	Na-HCO ₃
Rimava Basin												
Bátka	RKZ-1	1989	859	435-658	Triassic	carbonates	-		-	-	-	ı
Tornal'a	HM-5	1973	158	155-157.5	Triassic	limestones	45	5.86.10-2	18	0.56	1.8	Ca-HCO ₃
Cakov	BČ-3	1984	928	489-874	Triassic	carbonates	3.3	1.74.10-4	29	0.19	5.9	Ca-Mg-HCO ₃
Rimavské Janovce	GRS-1	2003	2,020	767-1,008	Triassic	carbonates	10.5 +	2.41.10-4	33	1.01	1.7	Ca-Mg-HCO ₃
Ivanice	FGRk-1	2007	1,050	618-1,050		-	-		-	-	-	-
Lučenec Basin – Rapovce structure	ovce structure											
Rapovce	GTL-2	2007	1,501	957-1,439	Triassic	carbonates	11.2	5.24.104	38	1.04	12.6	Na-HCO ₃

Note: "- re-injection borehole, **- geothermal observation borehole, ""- oblique well (perforated section corresponds to the length, not the depth), ""+ borehole developed from adit. "- structural-geological borehole, adapted in 2006 - 2008 as geothermal borehole, now 3,400 m deep, "- yield at pumping." - collapsed borehole.

of the coefficient of transmissivity contained greater share of sandy component, which deposited on the slope of the subsiding basin and finer particles of the pelitic component were deposited to larger distance from the basin edge. In evaluating the aquifers of each prospective geothermal area of Slovakia based on the T value (condition over 3 wells in the area) the Košická kotlina Basin seems to be the most favourable, followed by the Central Depression of the Danube Basin (Tab. 1.7). The drillings carried out in the Košická kotlina Basin were mainly located in the area of predominance of sand deposits transported by the then Hornád palaeoflow. The drillings in the Central Depression of the Danube Basin are distributed across the whole area with different proportion of sandy component. The depth of the wells in the Košická kotlina Basin ranges from 160 m to 190 m, while in the Central Depression the borehole depths are ranging from 290 m to 3,303 m and Md of the wells depth is 1,800 m.

The lowest value of the transmissivity coefficient T for Neogene sediments in the wells has been documented in the Central Depression of the Danube Basin – W and SE edge (Chorvátsky Grob – FGB-1) Strháre-Trenč Graben

(Slovenské Kľačany – TSK-1) and Humenné Ridge (Sobrance – TNS-1).

The Neogene sediments (sands, sandstones, conglomerates) of the Western Carpathians have got an important position in the process of the mineral waters formation and their accumulation. First, they are aquifers of significant thicknesses in the basins and depressions, and secondly they were often deposited directly upon the Mesozoic basement of the Central and Inner Carpathians. This way, the basal clastics of Neogene together contribute to the genesis of the mineral waters of the Vienna Basin and Levice block. This fact is the best documented by sources of mineral water along the Levice-Turovce thermal Springs Line that stretches with the length of about 20 km. On this line surge out the mineral waters of varied chemical composition with very different content of CO₂, at many places this phenomenon is accompanied by deposition of travertine. The function of horst in all its length changes due to its gradual subsidence, but also due to a change in the nature of Mesozoic sediments. The Neogene sediments that overlay the western part of the Horst, are Sarmatian in age (tuffaceous siltstones and claystones) and in the

Tab. 1.6 The transmissivity coefficient for Mesozoic aquifers in Slovakia verified by deep boreholes

Age of aquifer	Lithology of aquifer		Yield [l. s ⁻¹]	T [m ² . s ⁻¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g . l ⁻¹]
		n	77	56	77	76	76
		Min	1.6	6.70 . 10 ⁻⁶	18.0	0.1	0.4
		Max	100.0	9.25 . 10-2	129.0	29.0	90.0
Mesozoic	carbonates	Md	12.4	8.26 . 10-4	39.0	0.9	1.8
		Mn	19.4	5.87 . 10 ⁻³	44.7	3.3	5.5
		G	12.3	9.08 . 10-4	40.1	1.2	2.2
		σ/σ log T	19.0	0.90	23.1	5.7	11.9

Note: t – transmissivity coefficient, n – count of boreholes, Min – minimum value, Max – maximum value, Md – median, Mn – arithmetic mean, G – geometrical mean, σ – standard deviation, σ log T – standard deviation of the transmissivity coefficient logarithm values, TDS – total dissolved solids

Tab. 1.7 Values of geometric means of coefficient of transmissivity and standard deviation of the transmissivity coefficient logarithm values, calculated for different aquifer types of perspective geothermal areas in Slovakia

Perspective geothermal area	Type of aquifer	n	G(T)	σ log T
Komárno marginal block	С	3	1.53 . 10-4	0.04
Liptovská kotlina Basin	С	4	2.88 . 10-4	0.82
Central Depression of the Danube Basin	N	43	5.27 . 10-4	0.57
Topoľčany embayment and Bánovská kotlina Basin	С	7	5.32 . 10-4	1.16
Košická kotlina Basin – carbonates	С	3	3.77 . 10-4	0.62
Košická kotlina Basin – Neogene sediments	N	3	1.28 . 10-3	0.26
Central Slovakian Neogene volcanics NW part	С	7	9.37 . 10-4	1.08
Levočská kotlina Basin W and S part	С	7	1.11 . 10-3	0.44
Rimavská kotlina Basin	С	3	1.35 . 10-3	1.42
Komárno high block	С	6	2.42 . 10-3	0.9
Upper Nitra Basin	С	3	3.73 . 10-3	1.33

Note: C – Mesozoic carbonates with karst-fissure permeability, N – Neogene sediments with intergranular permeability, n – count of boreholes, G(T) – geometrical mean of the transmissivity coefficient T [m^2 . s^{-1}]; σ log T – standard deviation of the transmissivity coefficient logarithm values;

Tab. 1.8 Values of standard specific capacities and geometric means of derived values of transmissivity and hydraulic conductivity coefficients, calculated for aquifers of the Inner Carpathian Palaeogene & Buda Palaeogene sediments in Slovakia (Malík et al., 2007)

No.	Description	Origin and classification	Group	n	M[1q]	Md[1q]	G[T]	σ log Τ	G[K]
58	Calcareous siltstones and claystones, occasionally with coal intercalations	Shallow sea sediments of the Buda Palaeogene	PG	116	0.054	0.068	1.15 . 10-4	0.92	4.66 . 10-6
59	Sands, marly and calcareous sands, decomposed sandstones and siltstones	Shallow sea sediments of the Buda Palaeogene	PG	16	0.126	0.141	3.44 . 10-4	0.56	1.29 . 10-5
60	Gravels, decomposed conglomerates	Shallow sea sediments of the Buda Palaeogene	PG	3	0.151	0.120	1.40 . 10-4	0.25	1.34 . 10-5
61	Claystones, calcareous claystones and marls and layers with overwhelming claystones/ marlstones over sandstones, including menilite layers	Marine sediments of Inner Carpathian Palaeogene	PG	127	0.107	0.117	1.73 . 10-4	0.81	1.39 . 10-5
62	Claystone flysch – flysch with prevailing claystones or marlstones	Flysch sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	7	0.010	0.012	9.60 . 10-6	0.57	4.70 . 10-7
63	Normal flysch – claystones/marls, siltstones	Flysch sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	220	0.102	0.102	1.49 . 10-4	0.77	1.11 . 10-5
64	Sandstone flysch – flysch with prevailing sandstones	Flysch sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	13	0.120	0.100	1.21 . 10-4	0.65	5.51 . 10-6
65	Conglomerate flysch – flysch with prevailing conglomerates	Flysch sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	4	0.158	0.178	3.94 . 10-4	0.62	2.06 . 10-5
66	Sandstones with thin intercalations of claystones	Flysch sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	120	0.123	0.145	2.02 . 10-4	0.74	7.92 . 10-6
67	Multicomponent conglomerates and breccias, variably with beds of sand-stones	Sea sediments and subaqueous slides of Inner Carpathian Palaeogene	PG	17	0.068	0.078	7.70 . 10-5	0.80	3.68 . 10-6
68	Calcareous breccias and conglomerates, sandy limestones, and limestones, variably with beds of sandstones, occasionally also marlstones	Sea sediments of Inner Carpathian Palaeogene and Late Cretaceous	PG	60	0.251	0.209	3.58 . 10-4	0.99	1.58 . 10-5

Explanation of abbreviations: \mathbf{n} – number of interpreted hydraulic tests on hydrogeological boreholes and wells; $\mathbf{M}(^{l}\mathbf{q})$ – arithmetic mean of the standard specific capacity $^{l}\mathbf{q}$ [l. s^{-l} . m^{-l}]; $\mathbf{M}\mathbf{d}(^{l}\mathbf{q})$ – median value of the standard specific capacity $^{l}\mathbf{q}$; $\mathbf{G}(\mathbf{T})$ – geometrical mean of the transmissivity coefficient \mathbf{T} [m^{2} . s^{-l}]; σ log \mathbf{T} – standard deviation of the transmissivity coefficient logarithm values; $\mathbf{G}(\mathbf{K})$ – geometrical mean of the hydraulic conductivity coefficient \mathbf{K} [m. s^{-l}]; $\mathbf{P}\mathbf{G}$ – group of Palaeogene sediments.

Tab. 1.9 Characteristics of the Neogene sedimentary aquifers verified through deep boreholes

Age of aquifer	Lithology of aquifer		Yield [l.s ⁻¹]	T [m ² · s ⁻¹]	Temperature at well head [°C]	Heat power [MWt]	TDS [g . l ⁻¹]
	sediments	n	58	49	58	57	58
		Min	0.3	4.17 . 10-5	18.0	0.01	0.4
		Max	25.0	6.93 . 10 ⁻³	91.0	6.8	30.0
Neogene		Md	10.0	5.14 . 10-4	52.0	1.6	2.6
		Mn	10.5	1.02 . 10-3	52.1	1.9	4.2
		G	7.7	5.35 . 10-4	47.4	1.0	2.6
		σ/σ log T	6.9	0.51	20.3	1.8	5.3

Note: \mathbf{n} – count of boreholes, \mathbf{Min} – minimum value, \mathbf{Max} – maximum value, \mathbf{Md} – median, \mathbf{Mn} – arithmetic mean, \mathbf{G} – geometrical mean, σ – standard deviation, σ log T – standard deviation of the transmissivity coefficient logarithm values

eastern part Badenian in age (epiclastic sandstones). The complexity of geological and tectonic structure of the area is a reflection of orogenic processes, where one part of the territory subsided (Danube Basin), other on was lifted up (*Štiavnica* Stratovolcano). The presence of multiple aquifers with varied nature of the water in terms of the chemical and isotopic composition portrays well the complexity of forming of different chemical types of the mineral waters of the Western Carpathians.

1.4.5 Aquifers of mineral waters in neovolcanites

The complex is characterized by neovolcanite rocks of fissure-intergranular permeability. The regional tectonic lines are essential elements in the accumulation and distribution of mineral waters either due to complex neovolcanic rocks as well as the basement, which is built of Mesozoic sediments and rocks of Crystalline. Therefore sources of mineral waters are often present in the rock environment of neovolcanites which have their origin in the bedrock formed by Mesozoic rocks as in the case of sources Kremnica – KŠ-1, Vyhne – H-1, Vyhne – HGV-3, Lukavica – LKC-4, Sklené Teplice – ST-4 and Sklené Teplice – ST-5.

The greatest potential for accumulation of mineral water in rock complexes of the Central Slovakian neovolcanites, which contributed to the formation of mineral waters in Santovka - Dudince area, have Badenian volcanic epiclastics. These sediments fill the depression at the contact of neovolcanites with their basement. Tuffaceous sandstones were documented by 80 m deep borehole Dvorníky – HG-3 northeast of Dudince. Pumping tests lasting 16 days documented yield Q = 10.5 1. $s^{-1}/s = 7.5$ m. The value of the coefficient of hydraulic conductivity for these aguifers was $k = 8.10^{-5} \text{ m} \cdot \text{s}^{-1}$ and of the transmissivity coefficient $T = 3.24 \cdot 10^{-3} \text{ m}^2 \text{ s}^{-1}$. The water was of chemical type Ca-HCO₂ and TDS amounted to 0.32 g. 1-1 (Hlavatý & Fecek, 1973). The wells HT-1 and HIP-13 in Hontianske Trst'any were 150 m and 173 m deep; they documented the tuffaceous sand to sandstone of thicknesses of 40 m and 120 m. For the well-HT 1 it was documented yield Q = 12 1. $s^{-1}/s = 1.43 \text{ m}$ by hydrodynamic test lasting 36 days. The water was of chemical type Ca-Na-HCO₂ with TDS 0.54 g . 1⁻¹. The evaluation of the pumping test gave the value of coefficient of hydraulic conductivity $k = 6.25 \cdot 10^{-5} \text{ m} \cdot \text{s}^{-1}$ and transmissivity coefficient T = 2.07. 10⁻² m² . s⁻¹ (Lauko & Novomestská, 1989). 30 days-long hydrodynamic test in the borehole HIP-13 documented yield Q = 5.7 1. $s^{-1}/s = 6.5 \text{ m}$ (s = drawdown). The water was of chemical type Ca-HCO3 with TDS 0.56 g. 1-1 and temperature 17 °C. Hydraulic parameters determined from the evaluation of the pumping tests gave coefficient of hydraulic conductivity $k = 3.33 \cdot 10^{-5} \text{ m} \cdot \text{s}^{-1}$ and transmissivity coefficient $T = 2.47.10^{-3} \text{ m}^2 \cdot \text{s}^{-1}$ (Fecek et al., 1981).

The aquifers of mineral waters in neovolcanites (Badenian andesites) documented by deep borehole Rusovce – HGB-1 in the Danube Basin reached a value of the transmissivity coefficient $T=1.14 \cdot 10^{-5} \text{ m}^2 \cdot \text{s}^{-1}$ (Bondarenková et al., 1977). Tectonic affected neovolcanites rock complexes in Banská Štiavnica were explored by borehole

HR-1. Hydrodynamic tests documented favourable conditions for the accumulation of mineral water in altered andesite vein filling and the coefficient of transmissivity $T = 5.13 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1} \text{ (Remšík et al., 2007)}.$

1.5 Conclusions

The richness of any country in the incidence of sources of mineral waters is either a manifestation of specific natural conditions or technical maturity. In the Slovak conditions the number of natural sources clearly outweighs the artificial ones; however, the physical state of some of them is not very good. By the inventory of the sources of mineral water in 1997-2000, 1,687 sources were documented in Slovakia; 111 were not found, 297 expired and 30 have been destroyed. Among the 111 not found sources 80 accounted for springs and 27 for wells; 4 of them were dug wells. In some places there occurs a destruction of natural sources due to various factors, but still there is a need to implement new sources to ensure supplies for the purposes of filling the mineral waters into the consumer packaging, for medical care, recreation and use of their thermal-energy potential.

The largest representation of mineral waters in Slovakia is recognized in the zones of the Central Western Carpathians (43 %), of which account for most of the sources Inner Carpathian Palaeogene (24.1 %) and Mesozoic sediments (15.2 %). The smallest number of sources accounted for metamorphic rocks (3.2 %) and magmatic rocks (1.5 %). The second most numerous sources of mineral water fall within Neogene sediments (31.7 %). This structural-geological facies manifests the largest representation of the mineral water sources that have been acquired through technical works (the number of wells far outweighs the number of springs). The third and fourth most numerous sources of mineral water fall within the Flysch Zone (13.3 %) and Neovolcanites (6.8 %). The lowest representation of mineral water is within the Klippen Belt (4.2 %).

The mineral water sources in Slovakia are characterized by quite a varied representation of chemical water types with a wide range of TDS, temperature and yield. Colourful presence of chemical types of mineral water depends on the nature of the aquifers of mineral water, the tectonic disturbances and storage conditions at depth.

Individual structural-tectonic zones of the Western Carpathians in Slovakia are characterized by representation of mineral waters of different chemical types. In the Flysch Zone in the near-surface zone chemical type Ca-HCO₃ is dominant, while with the increasing depth the share of the component A₁ increases according Palmer-Gazda classification of groundwater. Some sources with shallow water circulation exhibit H₂S presence. On major fault lines emerge waters of chemical type Na-HCO₃ and Na-HCO₃-Cl, eventually Na-Cl-HCO₃. An interesting feature is the presence of mineral water of chemical type Mg-SO₄-HCO₃ (Zbudský Rokytov) or the presence of thermal water of chemical type Na-Cl in the well FPJ-1 in Oravská Polhora with TDS up to 50 g . l-1 and a water

temperature of 31.3 °C, which was documented in the sediment of the Obidowa-Słopnice-Zboj unit.

Mineral waters of the Klippen Belt with shallow ground water circulation are of dominant chemical types Ca-Mg-HCO₃ and Ca-Na-HCO₃. Waters with deeper circulation, surging along the tectonic lines are of chemical-type Na-HCO₃ (Nimnica) and Ca-Mg-HCO₃-SO₄ (Mojtín). Water from Belušské Slatiny descends into greater depth and at the surface it reaches a temperature of 21.5 °C.

In the zone of the Central Western Carpathians thanks to its variegated rock representation there are present the most chemical types of mineral waters. The mineral waters of Crystalline with shallow circulation are of chemical types Ca-Mg-HCO3 and Na-HCO3. At greater depth, and within the tectonic zones the water of chemical type Na-HCO₂ is present with water temperature up to 25 °C. In the Vlachovo and Čučma a province of nitrogen acratotherms has been earmarked. The Mesozoic sediments of the Krížna Nappe are characterized by mineral waters of chemical type Ca-Mg-HCO₃-SO₄, which in the case of deep circulation reach a temperature of 33 – 53 °C. Carbonated mineral waters of this nappe are of the same chemical type, but achieve a lower temperature of 20-45°C. In the Plavnica – Lipany area, near the Klippen Belt the Mesozoic sediments Krížna Nappe were verified by wells of depth of 3,500 m to 4,000 m in the bedrock of the Inner Carpathian Palaeogene sediments. These Mesozoic sediments are water-saturated and the water is of chemical types Na-HCO₃-Cl-SO₄ and Na-Cl. Mesozoic sediments of the Choč Nappe are characterized by the presence of acratotherms of chemical type Ca-Mg-HCO₃. At some places (e.g. Kalinčiakovo, Vyhne) from the Mesozoic sediments of the Choč Nappe surge mineral waters of chemical type Ca-Mg-HCO₃-SO₄. Carbonic and weakly mineralized mineral waters of the Mesozoic sediments of the Choč Nappe are of chemical types Ca-Mg-HCO₃, Ca-Mg-HCO₃ and Ca-Mg-HCO₃-SO₄. The carbonates of the Hungarian Central Highlands in the area of Patince – Komárno bind thermal waters $(20 - 40 \, ^{\circ}\text{C})$.

Mineral waters Inner Carpathian Palaeogene are characterized by the presence of mineral water of chemical types Ca-Mg-HCO₃ and Na-HCO₃; sometimes even with the presence of H₂S. Cold carbonated waters are of che-mical types Ca-Mg-HCO, Ca-Mg-Na-HCO, and in contact with the Hornádska kotlina Basin and Branisko Mts. surge mineral waters of chemical type Ca-Mg-Na-HCO₃-Cl (Slatvina, Vojkovce). Neogene sediments have a wide representation of chemical types of mineral water with a wide range of TDS. Mineral waters with shallow circulation are the chemical type Ca-Mg-HCO3 and with increasing depth they are enriched in component A₁ according to Palmer-Gazda classification of groundwater. In the Záhorská nížina Lowland the mineral waters from greater depths are of chemical types Ca-SO₄, Na-SO₄. At great depths of the Neogene basin we encounter the highly mineralized waters of chemical type Na-Cl. While in the case of the Central Depression of the Danube Basin and Záhorská nížina Lowland the waters are with thalassogenic mineralization, in the case of the Eastern Slovakia Basin dominate the water with halitogenic mineralization.

Nature of water from neovolcanites is greatly influenced by their deep position. Mineral waters of shallow circulation are of chemical types Ca-Mg-HCO₃, Ca-Mg-Na-HCO₃ Na-Ca-Mg-HCO₃. The mineral waters of deeper circulation reach higher temperatures and are of chemical type Na-Ca-SO₄-HCO₃. Provided the neovolcanites complex is a part of the sedimentary basin fills then the waters are of chemical type Na-Cl or with thalassogenic or halitogenic mineralization.

The most important aquifers from the genetic viewpoint of mineral waters in Slovakia are the Mesozoic sediments of the Central Western Carpathian and the Neogene sediments of the basins filling.

For the Crystalline aquifers (metasomatic limestone in phyllites of the Gelnica Series), the borehole GVL-1 in Vlachovo gave the transmissivity coefficient $T=1.15 \cdot 10^{-3} \, \text{m}^2 \cdot \text{s}^{-1}$. Favourable characteristics for accumulation of mineral water were also found from at the contact of greisens with the phyllites of the Gelnica Series (RS-1 borehole Čučma).

The Mesozoic aquifers (limestones and dolomites) of the mineral waters have been verified by 79 hydrogeological boreholes (56 pumping tests) and the value of the geometric mean of the transmissivity coefficient $G(T) = 9.08 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$. Drillings carried out in the environment of Mesozoic carbonates are also reported to have relatively large yields (Md Q = 12.41. s⁻¹/Mn Q = 19.41. s⁻¹), whereas the most productive is the borehole OZ-2 in *Oravice* (Q = 1001. s⁻¹).

For the Inner Carpathian Palaeogene aquifers (sand-stones, conglomerates, breccias), the transmissivity coefficient T value was obtained for the elevation part of the bedrock within the discharge area of Malé and Veľké Bielice. The value of this indicator ranges from $2.81 \cdot 10^{-3} \, \text{m}^2 \cdot \text{s}^{-1}$ to $3.11 \cdot 10^{-3} \, \text{m}^2 \cdot \text{s}^{-1}$. Specified range of values for faulted breccia exceeds the value of G (T) = $3.58 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$ obtained for a set of wells to which data were available from 60 pumping tests across Slovakia.

The Neogene sedimentary aquifers (sands, sandstones, conglomerates) of the mineral waters have been verified by 58 hydrogeological boreholes (49 pumping tests) and the value of the geometric mean of the transmissivity coefficient $G(T) = 5.35 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$. The drillings carried out in the Neogene sediments environment achieved balanced yield (Md $Q = 10.01 \cdot \text{s}^{-1}/\text{Mn} \ Q = 10.51 \cdot \text{s}^{-1}$), whereas the most productive wells FGG-2 and FGG-3 are in Galanta ($Q = 251 \cdot \text{s}^{-1}$).

The neovolcanites aquifers (volcanic epiclastics) of mineral waters, which are involved in the formation of the mineral water in Santovka – Dudince have been verified by 3 hydrogeological boreholes 80-173 meters deep. The values of the transmissivity coefficient $T=2.47 \cdot 10^{-2} \, \text{m}^2 \cdot \text{s}^{-1}$ to $T=2.07 \cdot 10^{-2} \, \text{m}^2 \cdot \text{s}^{-1}$. These aquifers (Badenian andesites) were encountered by deep borehole HGB-1 in Rusovce in the Danube Basin; the value of the transmi- ssivity coefficient $T=1.14.10^{-5} \, \text{m}^2 \cdot \text{s}^{-1}$. In the area of Banská Štiavnica in the tectonically affected neovolcanite rock complexes the transmissivity coefficient $T=5.13 \cdot 10^{-4} \, \text{m}^2 \cdot \text{s}^{-1}$.

1.6 References

- Andrusov, D., 1958: Geológia československých Karpát I. SAV Bratislava. 304 p.
- Biely, A. (editor), Bezák, V., Elecko, M., Kaliciak, M., Konecný, V., Lexa, J., Mello, J., Nemcok, J., Potfaj, M., Rakús, M., Vass, D., Vozár, J., Vozárová, A., 1996: Geological Map of Slovakia 1:500 000, Ministry of Environment of Slovak Republic, State Geological Institute of Dionýz Štúr, Bratislava, (explanations in Slovak and English).
- Bondarenková, Z.,Franko, O., Hramec, J., Zbořil, Ľ, Motlíková, H., 1977: Bratislava – Rusovce – geotermálny vrt HGB-1. Vyhľadávací hydrogeologický prieskum. Účel: Možnosti získať termálnu vodu v tejto oblasti. Slovenský geologický úrad; Bratislava. IGHP; Žilina:. VIKUV Budapešť. Geofond Archive (ID 48993). 39 p.
- Brodňan, M. & Nemsilová, M., 1960: Štúrovo Podunajská nížina hnedé uhlie. Záverečná správa. Geofond, Bratislava.
- Fecek, P., Ďungelová, H., Droppa, V., 1981: Neogén Ipeľskej pahorkatiny. Vyhľadávací hydrogeologický prieskum pitná voda. Cieľ: Zhromaždenie a spracovanie prvotných a druhotných informácií k následnému zhodnoteniu klimatických, hydrologických, geologicko-litologických, hydrogeologických a hydrochemických pomerov územia, s vyčíslením prírodných zdrojov a využiteľného množstva ako i rámcového stanovenia ochrany podzemných vôd pre kategóriu C2. IGHP, Žilina. SGO, Bratislava. Geofond Archive (ID 58410). 165 p.
- Franko, O. & Bodiš, D., 1989: Paleohydrogeology of Mineral Waters of the Inner West Carpathians. Západ. Karpaty. Séria Hydrogeológia a inžinierska geológia 8. p. 145 163.
- Franko, O. & Melioris, L., 2000: Minerálne a termálne vody Slovenska vznik a rozšírenie. Podzemná voda VI./2000 Č.
 1. Slovenská asociácia hydrogeológov. p. 5 28.
- Franko, O. & Snopko, S., 1979: Dusíkové akratotermy v Spišsko-gemerskom rudohorí (Nová hydrogeochemická provincia minerálnych vôd kryštalinika Západných Karpát). Geologické práce, Správy 72. Geologický ústav Dionýza Štúra. p. 149 168.
- Franko, O., Gazda, S., Michalíček, M., 1975: Tvorba a klasifikácia minerálnych vôd Západných Karpát. Geol. ústav D. Štúra Bratislava. 230 p.
- Hlavatý, Z. & Fecek, P., 1973: Dvorníky doplňujúci hydrogeologický prieskum. Cieľ: Zabezpečenie náhradného vodného zdroja pre vodovod Dudince. IGHP, Bratislava. Geofond Archive (ID 29605), 9 p.
- Jetel, J., 1999: Hydrogeologická a hydrogeochemická mapa Ľubovnianskej vrchoviny a Pienin 1 : 50 000 – textové vysvetlivky. Geofond, Bratislava.
- Krahulec, P., Rebro, A., Uhliarik, J., Zeman, J., 1977: Minerálne vody I., Osveta Martin.436 p.
- Krahulec, P., Rebro, A., Uhliarik, J., Zeman, J., 1978: Minerálne vody II., Osveta Martin.1040 p.
- Krásný, J., 1993: Classification of transmissivity magnitude and variation. Ground Water, 31, 2, p. 230 236.
- Lauko, V., & Novomestská, D., 1989: Hontianske Trsťany vyhodnotenie hydrogeologického prieskumného vrtu HT-1. Hydrogeologický prieskum. Ciel: Overiť možnosti získania zdroja pitnej a úžitkovej vody. Vodné zdroje, Bratislava. Geofond Archive (ID 70951). 16 p.
- Maheľ, M., 1952: Minerálne pramene Slovenska so zreteľom na geologickú stavbu. Práce ŠGÚ. 62 p.
- Malík, P., Bačová, N., Hronček, S., Ivanič, B., Kočický, D., Maglay, J., Malík, P., Ondrášik, M., Šefčík, P., Černák, R.,

- Švasta, J. & Lexa, J., 2007: Zostavovanie geologických máp v mierke 1: 50 000 pre potreby integrovaného manažmentu krajiny [Composition of geological maps at a scale of 1: 50,000 for the landscape management needs, in Slovak]. Manuscript, Geofond Archive of the SGIDŠ, No. 88158, 554 p.
- Marcin, D., Cicmanová, S., Olekšák, S., Bajtoš, P., Teťák, F., 2005: Základná hydrogeologická a hydrogeochemická mapa pohoria Čergov v mierke 1 : 50 000. Čiastková záverečná správa. Geofond Archive, Bratislava. 132 p.
- Nemčok, J., Zakovič, M., Gašpariková, V., Ďurkovič, T., Snopková P., Vrana, K., Hanzel, V., 1990: Vysvetlivky ku geologickej mape Pienin, Čergova, Ľubovnianskej a Ondavskej vrchoviny. V mierke 1:50 000. Geologický ústav Dionýza Štúra, Bratislava. 131 p.
- Rebro, A., Matejčeková, E., Bergerová, A., Frnčo, M., 1989: Nimnica – prieskumno-exploatačný vrt B-10 na minerálnu vodu v kúpeľoch. Podrobný inžinierskogeologický prieskum. IGHP, Žilina. Geofond Archive (ID 70913). 28 p.
- Rebro, A., Matejčeková, E., Jurdík, M., Židek, L., 1978: Nimnica vrt B-7 a B-8, balneologický prieskum, účel: vybudovanie nových zdrojov minerálnych vôd. Predbežný hydrogeologický prieskum. IGHP, Žilina. Geofond Archive (ID 40560). 34 p.
- Remšík, A., Malík, P., Bajtoš, P., Rapant, S., Bottlik, F., Bačová, N., Michalko, J., Benková, K., Krčmová, K., Fendek, M., Marcin, D., Černák, R., Helma, J., Šimon, L., Mrosko, J., Moravská, A., Maďar, D., Weis, K., Grand, T., Ujpál, Z., Šivo, A., Richtáriková, M., Jánošík, E., Kováčik, J., Daříček, A., 2007: Neovulkanity severných svahov Štiavnických vrchov. Vyhľadávací hydrogeologický prieskum. Zodpovedný riešiteľ: A. Remšík. MŽP SR Bratislava; SGIDŠ, Bratislava. Geofond Archive (ID 88800), 224 p.
- Urban, K., Malý, J., Pavúr, K., 1962: Nosice správa o hydrogeologickom prieskume minerálnych prameňov 1958 1961. Geologický prieskum, Žilina. Geofond Archive (ID 8730). 65 p.
- Teťák, F., Kováčik, M., Pešková, I., Nagy, A., Buček, S., Maglay, J., Vlačiky, M., Laurinc, D., Žecová, K., Zlinská, A., Liščák, P., Marcin, D., Žilka, A., Kucharič, L., Gluch, A., Baláž, P., 2016: Vysvetlivky ku geologickej mape regiónu Biela Orava. MŽP SR a ŠGÚDŠ, Bratislava, 217 s. (Explanations to the Geological Map of the Biela Orava region), p. 144-148. ISBN 978-80-8174-016-9.
- Zakovič, M., Bodiš, D., Fendek, M., Potfaj, M., Gabauer, G. & Bálint, J., 1988: Geologický výskum jódo-brómových vôd vo vybraných oblastiach SSR. Manuskript archív SGIDŠ Bratislava, 68 p.
- Zakovič, M., Halečka, J., Marcin, D., 2006: Podklady pre návrh ochranných pásiem zdroja prírodnej minerálnej vody Veronika (LZ-6) v Ľubovnianskych kúpeľoch. Podzemná voda XII./2006 Č. 2. Slovenská asociácia hydrogeológov. p. 156 167.
- Zakovič, M., Hanzel, V., Gazda, S., 1993: Vysvetlivky k hydrogeologickej mape v mierke 1:50 000 Levočské vrchy. Geofond, Bratislava.
- Zakovič, M., Potfaj, M., Fendek, M., Bodiš, D., 2009: Jódo-brómové podzemné vody v oblasti Oravskej Polhory. Podzemná voda XV 2/2009. Slovenská asociácia hydrogeológov. p. 230 239.
- Zeman, M., Machková, N., Trulíková ml, B., Švaralová, M. & Weissensteiner, J., 2000: Minerálne pramene Slovenskej republiky. SAŽP, Banská Bystrica. /http://www.sazp.sk/slovak/struktura/ceev/DPZ/pramene/pramene.html/.